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Abstract

An active area of research in the robotics community is “swarm control,” where many simple robots work
together to execute tasks which are beyond the capability of any single robot acting alone. Yet in order for the
swarm members to work together effectively they must maintain a reliable and robust wireless communication
network among themselves.

The goal of this project was to create a motion control law which could fulfill the dual and sometimes
conflicting requirements of executing a primary mission (e.g., search and rescue), while maintaining a robust
mobile wireless communication network among the swarm members.

The success or failure in sending or receiving a wireless message is inherently probabilistic, but the odds
of successfully relaying a message increase considerably based upon the spatial arrangement of the swarm
members. This imposes a variety of constraints on each robot’s motion. Each robot sending a message
should:

1. maintain a line of sight to the receiving robot (esp. in an environment like a cave or bunker with dense
walls);

2. stay within close proximity of the receiving robot (the range is dictated by the power of the transmitter);
and

3. increase the overall redundancy of the swarm by maintaining requirements 1 and 2 for two or more
receiving robots simultaneously.

To this end, several artificial potential field controllers - a popular method of robotic control - have been
developed in this project and simulated to determine their success in controlling the swarm. At a higher
level, the project addressed the challenge of composing a motion control law to achieve the primary mission,
while maintaining as many communication constraints as possible.

This project included a proof-of-concept implementation of the motion control law on real robots. In
addition, this project simulated and statistically analyzed the controller to determine its effectiveness at
achieving the primary mission and maintaining a robust communication network. The effectiveness of the
control law was seen both in simulation and experiment. Overall the robustness of the swarm was increased
200-300% in the scenarios considered.

Keywords: Swarm robotics, Communication Networks, Artificial potential fields, Line of Sight, Redun-
dancy



2

Acknowledgments

There are several people whom I need to thank, for without their help I could not have completed this project:
George Burton in the Machine Shop who built the camera mount; Norm Tyson in TSD for help rebuilding
the battery; Professor Bishop for his help with mobile robots and the Koala robots; Professor Piepmeier
who helped with the computer vision system; Professor Brown in the Computer Science Department who
gave excelent advice on communicating through Linux; Pierre Bureau and all the other members of K-team
in Switzerland; Robert Disque and Donald Garner of the CADIG lab and Bill Lowe with Technical Support
staff, who all helped with networking the robots; the biggest thanks goes to Michael Spinks of the CADIG
lab, who provided invaluable help with Samba.

Secondly, I need to thank: the Trident Committee; Dean Miller; Professor Shade; Professor Boden; and
Professor Fowler.

Finally I must thank my Advisor, Professor Esposito, whose guidance and advice has helped me to fully
realize this project.



3

Contents

Abstract 1

Acknowledgements 2

Contents 3

List of Figures 5

1 Introduction 7
1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Related work to problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Project goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Overview of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Organization of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 14
1 Task-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Artificial potential fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Basic task potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Related work to communication task potentials . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 High-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Work related to high-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Planned approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Low-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Motion Control Algorithm 23
1 Inter–robot separation distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Line of sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Potential Functions for Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Method for achieving redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Parallel Composition Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Theoretical approach to composition of task velocities . . . . . . . . . . . . . . . . . . 33
4.2 Algorithm for finding a feasible set of vectors . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Communication Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Experimental Setup 39
1 Localization via computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.1 Computer vision hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4

1.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 Communication between the base station and robot . . . . . . . . . . . . . . . . . . . . . . . 43
3 Programming and control of Koala Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Experimentation through Simulation 48
1 Modeling robot swarms as graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2 Graph theoretic measures of connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion and Future Work 59
1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2 Ideas for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 62

Appendices 65
A Programs for obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B Programs for inter-robot separation distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C Programs for line of sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
D Programs for redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
E Programs for parallel composition controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F Technical specifications for FireFly2 camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
G Programs for computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
H Values for color segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I C program running on Koala Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
J Programs for physical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
K Technical specifications for replacement batteries . . . . . . . . . . . . . . . . . . . . . . . . . 97
L Programs for Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
M Programs for baseline simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
N Programs for quantitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



5

List of Figures

1.1 The test scenario. Maintaining multiple connections per robot, as well as line of sight and
range constraints enables robust communication. . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Koala Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 The overall experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 A detailed view of the steps necessary for the final experimental setup. . . . . . . . . . . . . . 13

2.1 (a) Represents an overhead view of the robot’s workspace with two obstacles; (b) represents
the attractive potential made by the goal; (c) shows the repulsive potential produced by the
obstacles; (d) is the superposition of (b) and (c). All xy axis have units of cm and the z axis
has units of cm2/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A paraboloid with the goal at the minimum. Units of xy axis are cm while z axis is cm2/s . 16
2.3 (a) A radial cross section of the obstacle avoidance potential function and (b) the speed

assigned by this function. N = 50, D0 = 17 and the maximum height of the potential = 1. x
axis is in units of cm while the z axis is in cm2/s . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 (a) A parabola that changes to a line at distance = 3 (b) the speed capped at a maximum
speed of 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 A diagram depicting a differential drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Function φrange with ds = 1dm and dc = 3dm. y axis has units of cm2/s . . . . . . . . . . . . 24
3.2 The example scenario for the line of sight problem with a stationary robot and an obstacle. . 25
3.3 A simulation of a robot moving under φLOS. The velocity field created by −∇φLOS is marked

in blue. The initial position of the robot is marked with an o and the final position is marked
with an x. The red lines mark the occlusion lines. xy axes are in units of decimeters . . . . . 26

3.4 A simulation of a two robots moving according to the communication variant control law
(Section 4) so that they always maintain line of sight as they move towards the goal. xy axes
have units of cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The robots are located at the triangle vertices while the “+” marks the circumcenter. As can
be seen, for an obtuse triangle the circumcenter lies outside of the triangle. Note the different
scale of the images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 A triangle detailing how the Fermat center is constructed. The main triangle is plotted with
solid lines with its Fermat center marked with a small circle. The dashed lines are used for
constructing the Fermat Center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Any vector within 90◦ of the negative gradient will decrease the potential function. . . . . . . 33
3.8 The intersection of all constraints determines the set of feasible velocity directions. . . . . . . 34
3.9 (a) a set of vectors for which it is feasible to compose into a final velocity to decrease all

potentials. (b) a set of vectors with no such feasible direction, as determined by the exterior
angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 The arc of feasible directions are determined by the angle defined by the bias vectors. . . . . 35



6

3.11 The composition of the final velocity based on the magnitudes of the nearest limiting vectors
and ±90◦ direction from the more distant limiting vector. . . . . . . . . . . . . . . . . . . . . 35

3.12 The composition of the final velocity for the case when the limiting vectors are less than 90◦

apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Two simulations of a two robots moving according to either the original or the communication

variant of the controller. The starting and ending positions of the robots are the same in each
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 A diagram of the overall experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 A detailed view of the steps necessary for the final experimental setup. . . . . . . . . . . . . . 41
4.3 The mounting bracket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 The robot hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Three still frames from an experiment showing the robots coming together for communication,

avoiding obstacles (green square) and moving towards the goal location (yellow square in frame
3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 A communication network created by 5 robots in a simulation. . . . . . . . . . . . . . . . . . 49
5.2 a) A graph, G which has 5 nodes and 7 edges. b) K(G) > 1 because the removal of any node

does not disconnect the graph. c) K(G) = 2 because with the removal of 2 nodes the graph
becomes disconnected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Four different workspaces. The x’s mark the starting positions of the robots while the * are
the goal positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 A simulation in progress with the robots forming a communication network while avoiding
obstacles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 The metrics plotted over time for each experiment with the communication variant. . . . . . 53
5.6 The metrics plotted over time for each experiment with the original controller. . . . . . . . . 54
5.7 The values for the connectivity and time to goal metrics for every experiment. Triangles mark

upper and lower bounds for K–connectivity of the Comm. variant, while * mark the the upper
and lower bounds of the original controller’s K-connectivity. Note the different y axes for time
to goal and K–connectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 The percentage difference in the metrics between the baseline and the various experiments. . 57



7

Chapter 1

Introduction

A swarm of robots consists of many small, cheap, unsophisticated robots working together to accomplish a
task more efficiently than a single robot. There are many potential applications for swarm robotics, some
military applications include, but are not limited to, mine countermeasures both in water and on land [25].
Swarms are ideal for such applications because a swarm of robots can spread out and effectively cover a
large area in a short time. In addition, if one robot is destroyed by a mine, the rest of the swarm continues
to function. For these reasons, swarms are also excellent for search and rescue or reconnaissance operations
(e.g. working in the caves of Afghanistan) [40]. For example, a search and rescue swarm [34] could be used
in a disaster area such as the debris of the World Trade Center, the aftermath of an earthquake, searching
through a darkened, stricken vessel, or a burning building.

Swarms of robots have several advantages over a single robot or even a small group of complex robots:

• the individual units of a swarm are usually less complex than a single robot, meaning they are cheaply
and easily mass produced;

• a swarm is easier to reconfigure for new missions;

• swarms are more fault tolerant than a single robot because if one unit fails the rest of the swarm still
functions; and

• the control of the robots is decentralized so there is no “master” robot that controls the rest of the
swarm, allowing well designed control and communication algorithms to scale linearly as the size of
the swarm increases.

Swarms are common in biological systems. Bees communicate and work together to defend the hive and
produce honey. Ants, when working collectively, can move objects several times their mass. Wolves use packs
to hunt and fish form schools for protection and hydrodynamic efficiency. When robots work together in a
swarm they display some of the same behaviors and accomplishments that co-operative insects and animals
demonstrate.

Yet in order for the swarms to work together effectively they must have reliable and robust communication
among the team members. This project focuses on the theoretical design and experimental analysis of a
distributed motion control methodology for communicating swarms of robots.

1 Problem statement

The success or failure in sending or receiving a wireless message between robots is inherently probabilistic.
One way to increase the odds of successfully relaying a message without increasing the power required is to
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carefully construct the spatial arrangement of the swarm members to facilitate communication. This imposes
a variety of constraints on each robot’s motion; each robot sending a message should (see Figure 1.1):

1. maintain a line of sight to a receiving robot (especially in an environment like a cave or bunker with
dense walls); and

2. stay within close proximity of the receiving robot (the range is dictated by the power of the transmitter).

Furthermore, a good control methodology will exploit the redundancy of the swarm to improve robustness
to robot failure. To that end a third requirement can be introduced (refer again to Figure 1.1):

3. The robots can be constrained to move so that each robot is communicating (i.e. meeting objectives 1
and 2) with at least two other units at all times.

Therefore if one unit fails, the other robots are still communicating with at least one other swarm member.
This ensures that if a single unit fails, no one unit becomes isolated from all other units.

Figure 1.1: The test scenario. Maintaining multiple connections per robot, as well as line of sight and range
constraints enables robust communication.

Therefore, the overall design goal of this Trident Project is to create a swarm motion control algorithm.
The algorithm must meet the following criteria.

1. Goal Completion Compute robot velocities to allow the swarm to collectively accomplish a primary
mission such as search and rescue or exploration.

2. Robust Communication Ensure that each individual robot maintains line of sight and proximity with
at least two other robots at all times (see Constraints 1-3 above).

3. Distributed Operation Each robot makes its own motion control decisions based on locally available
information and no single robot acts as the leader or “master” robot. A well designed distributed
control algorithm would be able to scale linearly with the number of robots in the swarm.
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4. Fault Tolerant Do not allow the failure of one robot to be detrimental to the swarm performing any of
its missions

The above criteria are important because they reflect the swarm philosophy of efficiency and robustness,
discussed earlier. However, this poses a significant theoretical challenge because Criteria 1:Goal Completion
and 2:Robust Communication may at times be at odds with each other. Furthermore, when the algorithm
is distributed according to the Criteria 3:Distributed Operation, there is no central “master” robot to break
such deadlocks. Only a carefully designed motion control algorithm can address all of these criteria.

2 Related work to problem statement

A swarm can be defined as a group of robots moving in some collective coordinated fashion without any
rigidly defined relative spatial arrangement between robots. The first work on “swarms” was provided by
Reynolds [32]. This work attempted to devise a set of motion laws for a group of agents so that the collective
motion would mimic that of biological system such as schools of fish and flocking birds. The resulting
motion is called flocking. This work was primarily targeted at computer graphics applications. It was not
considered appropriate for robotics because it did not display robust behavior in the face of unstructured
or changing environments. Little work appeared in the field until Swaroop and Hedrick [35] among others
([10, 27]) began considering robot formations, primarily inspired by the automated highway project and
military applications. In contrast to swarms, formation applications require that a group of robots maintain
a fixed relative spatial orientation, despite movement of the group as a whole. In addition, some members
of the group are arbitrarily selected as the “lead” robots, making the control scheme somewhat centralized
rather than distributed, violating Criteria 3:Distributed Operation.

More recently there has been increased interest in swarm applications. As a result, the work of Reynolds
has inspired a new round of developments in the area of flocking. Flocking implies that, while the entire
group of robots does not need to maintain a fixed relative spatial orientation as in formations, the entire
group is required to possess identical velocity vectors at steady state ([26, 38, 18]). The primary theoretical
challenge in this work is to show collective stability (i.e. that the velocity of the members converges to some
constant) and ensuring that the members do not collide. In the works cited in this paragraph it is shown
that either all-to-all member information sharing is required or some centralized signal must be broadcast
to guarantee stability; again this violates Criteria 3:Distributed Operation.

Formation and flocking approaches for motion control are not appropriate for this project because they
do not afford robots the ability to operate as independent units and therefore may not be appropriate for
all types of missions. Approaches requiring centralized information are not truly distributed and will not
scale well (Criteria 3:Distributed Operation). Requiring a leader makes the swarm susceptible to single robot
failure and thus this approach also fails Criteria 4:Fault Tolerance.

The issue of communication in mobile networks is frequently considered in wireless communication and
mobile computing literature. For example, Rus [33] and Olfati-Saber and Murray [28] consider routing and
consensus problems in networks with changing topologies. However, this work assumes the motion of the
network nodes is not controllable and therefore they do not address Criteria 2:Robust Communications. Li
and Rus [21] consider networking where the motions of the nodes is controllable, but only seek to create an
ad-hoc network and not a robust communications network, again failing Criteria 2:Robust communication.
Similarly Bishop [6] and Liu and Passino [22] consider a swarm control method that does permit deviations
in individual motions but only addresses collective qualities of interest and cannot enforce Criteria 2:Robust
Communications.

3 Project goals

The goals of this project are as follows.
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Theoretical goals

• a distributed control law for maintaining an appropriate separation distance between two robots;

• a distributed control law for maintaining line of sight between two robots;

• a distributed control law for enforcing the redundancy constraint (i.e. maintaining two or more con-
nections per robot); and

• a novel algorithm for composing the above three controllers along with the primary mission control
law, in such a way that a maximum number of objectives are achieved.

Implementation and design goals

• a “proof of concept” demonstration of the operation of the swarm meeting the three design criteria
outlined in Section 1, using 3 robots.

Experimental/Simulation analysis goals

• simulation of a large number of robots moving according to the control law;

• quantitative analysis of swarm performance in completing both the primary mission and connectivity
and robustness in a swarm communication network.

The next section outlines specific tasks that were accomplished to successfully realize the goals and
explains the overall operation of the robot and interaction of experimental components.

4 Overview of project

Figure 1.3 shows the hardware involved. Up to 8 Koala robots (Figure 1.2), each with a on-board PC,
separate Motorola microprocessor, and a radio Ethernet attachment are placed in an environment populated
with obstacles. In a military application, each of the robots would have a GPS receiver to give absolute
position and a stereo vision setup or 360◦ laser range finder to determine the position of obstacles and other
robots. Because that equipment is not available for this project and because the self localization problem is
far beyond the scope of this work, an overhead camera interfaced to a base station PC will act as an “eye
in the sky” transmitting position information to the robots. This is a standard technique in mobile robotics
research and is analogous to having a satellite viewing several robotic tanks and broadcasting the tanks’
position.

Figure 1.2: The Koala Robot.
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Figure 1.3: The overall experimental setup.
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Figure 1.4 outlines the operation of the system. One “cycle” of the system’s operation begins with an
overhead digital camera taking a snapshot of the scene. The raw image must be imported to the base station
PC using the MATLAB Image Acquisition Toolbox. The raw image is then processed using programs written
in the MATLAB high level mathematical programming language (described in Chapter 4 Section 1.1). The
positions and orientations of each robot, as well as the coordinates of the vertices of each polygonal obstacle
are extracted from the image. This position information is used by five separate motion control functions:
Range, Line of Sight, Redundancy, Obstacle Avoidance and Go-To-Goal. Some background on the motion
control technique used in this work appears in Chapter 2 while the derivation of the three novel controllers,
Range, Line of Sight and Redundancy, is detailed in Chapter 3. Each of these functions returns a suggested
body velocity for the robot to achieve the respective objective. Each of these velocities is an input to the
parallel composition algorithm whose function is to compose these desired motion directions so that the final
desired body velocity accomplishes as many of these objectives as possible. The algorithm is described in
detail in Chapter 3 Section 4. The final output velocity of the controller is then transformed into a left and
right wheel velocity (see Chapter 2 Section 3). These wheel velocities are written to a file which is sent over
the wireless network to the hard drive of the appropriate robot (Chapter 4 Section 2).

At each cycle, the individual robots check their hard drives for updates. If a new velocity file is found,
it is read. The robot then writes these velocity values over the serial line to the embedded Motorola 68K
microprocessor which sets the motor input voltages accordingly (see Chapter 4 Section 3).

The input voltages then cause the robots to move. The overhead camera takes another picture and the
process repeats indefinitely.

A second phase of the project was to perform experiments at different desired numbers of communication
links per robot. Simulations proved to be the most effective way to perform hundreds of tests of the controller
in many situations not easily recreated in the lab. Chapter 5 Section 3 explains the experimental procedure
used for this phase of the project. Additionally, the results of these experiments were quantitatively analyzed
(see Chapter 5 Section 2) to determine the percentage increase in the robustness of the communication
network as compared to a baseline controller (Chapter 5 Section 4).

4.1 Organization of the report

In Chapter 2, some common techniques of robot motion control are reviewed. While many of these are
standard, the implementation was project-specific and a necessary step toward the end-state.

In Chapter 3 the primary theoretical contributions of the project are reported. The Range, Line of Sight
and Redundancy control laws are derived and verified through computer simulation. Finally, the parallel
composition scheme for composing all of the various desired velocities is discussed. Each of these functions
are a novel stand alone contribution to the field.

In Chapter 4 the experimental testbed design is described in detail. Many of the experimental components
were not designed to operate in tandem. Additionally, several project specific design solutions were created
to achieve the necessary experimental setup.

In Chapter 5 the experimentation done via simulation is discussed. This chapter includes a detailed
explanation of the various metrics used to determine and quantify the robustness of the swarm communication
network. The results of the various experiments are documented and interpreted.

Chapter 6 reflects on the contributions and tasks achieved in this project. In addition, ideas for future
research are examined.
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Figure 1.4: A detailed view of the steps necessary for the final experimental setup.
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Chapter 2

Background

This chapter reviews some robot motion control techniques and examines the literature for related work. As
reflected in Figure 1.4, robot control can be divided into three levels. A task-level control, which assigns a
desired body velocity for a robot to complete a specific objective (e.g, avoid obstacles); a high-level control
layer which composes various task-level velocity commands into a final desired body velocity which achieves
the mission objectives; and a low-level controller which implements the desired velocity produced by the
high-level controller, by selecting individual motor commands.

1 Task-level control

Many task level control techniques are available (see [20] for examples). However, only certain approaches
are appropriate for swarm applications. A suitable task-controller should be:

• Closed loop: It must continually update its motion plan based on its current position, allowing it to
correct for localization errors or noise that may be introduced in the course of the experiment.

• Reactive: It must be able to adapt to a changing environment. Each member of the swarm functions
as a moving obstacle, leading to a constantly changing environment.

• Distributed: Each member of the swarm should be able to synthesize its own motion plan using only
locally available information, without relying on a “master” robot.

• Computationally efficient: It must be able to recompute its motion plan in realtime, as new infor-
mation becomes available. Note that the robot’s on-board processing power (clockspeed of 266MHz)
is significantly less than that of a desktop computer (typically 1 GHz). The speed at which motions
must be computed by the robot’s on-board computer is dictated by the camera’s frame rate, typically
greater than 5 Hz.

Artificial potential fields meet all of these criteria

1.1 Artificial potential fields

A standard and highly adaptable approach is the artificial potential field method [19]. The artificial potential
field method involves projecting an artificial potential (i.e. scalar) field onto the domain in which the robot
is working. If x and y are coordinates describing the robot’s position the potential function is

φ(x, y).
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It is possible to define a potential field with the lowest potential value at a specific desirable location or
locations and highest value at undesirable locations.

The negative gradient, defined by:

ẋ = −∂φ

∂x

ẏ = −∂φ

∂y

determines the desired body velocity. By moving in the direction of the negative gradient the robot will
move to a lower potential in the shortest amount of time.

The distance to a goal location, the distance between robots, or the distance to the nearest obstacle can
be encoded in the function itself. Figure 2.1 (b) shows a potential field for a goal located in the upper right
hand corner. Part (c) of the figure shows the potential function for the robot to avoid collision with the
obstacles. Part (d) of the figure shows the superposition of these two simple artificial potentials. These
pictures show each potential field with the value of the field plotted as a height. This is analogous to the
gravitational potential represented on a topographic map.

Figure 2.1: (a) Represents an overhead view of the robot’s workspace with two obstacles; (b) represents the
attractive potential made by the goal; (c) shows the repulsive potential produced by the obstacles; (d) is the
superposition of (b) and (c). All xy axis have units of cm and the z axis has units of cm2/s.

For many potential fields, the negative gradient can be calculated symbolically. However many other
functions representing potential fields are too complex or have a discontinuity so the negative gradient cannot
be evaluated symbolically. For such potential fields the negative gradient must be found using numerical
methods according to the definition of the derivative

∂φ

∂x
≈ (φ(x + ∆)− φ(x−∆))

2∆
.
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Through experimentation, ∆ = .01cm was observed to provide an approximation sufficiently close for the
engineering purposes of this project.

1.2 Basic task potentials

Several schemes exist using artificial potential fields methods for the basic tasks of obstacle avoidance and
goal completion. The purpose of this project is not to investigate these ideas or functions any further. The
main point of this project is to develop controllers for communication (i.e. maintaining inter–robot range
and line of sight) and then combine them with pre-existing obstacle avoidance and goal completion potentials
in a novel way. Therefore, standard functions as outlined in the literature are used for this project. While
these are standard techniques, it is a necessary step to creating a fully functional system.

Goal completion potential functions The goal completion potential function is a shallow paraboloid.
A paraboloid is a parabola rotated about the z axis to create a 3 dimensional shape, see Figure 2.2. A
paraboloid is mathematically defined as:

φgoal(x, y) = (x− a)2 + (y − b)2

where (a, b) is the Cartesian coordinate of the goal location. As the robot closes the distance to the goal, the
velocity decreases until at the goal the velocity equals zero. A paraboloid is a stabilizing function. As the
robot approaches the goal, its speed decreases and thus the robot will not overshoot the goal but in theory,
come to rest at the goal. [20, page 299]

Figure 2.2: A paraboloid with the goal at the minimum. Units of xy axis are cm while z axis is cm2/s

Obstacle avoidance potential functions Standard obstacle avoidance functions as defined by Latombe
are also used [20, page 300]

φobst(d(x, y)) =

N
(

1
d(x,y) −

1
D0

)2

d(x, y) ≤ D0

0 d(x, y) > D0

,

where d(x, y) is the distance from the robot to the nearest edge of the obstacle, D0 is an arbitrary cutoff
distance where the obstacle avoidance function stops exerting influence, and N is a positive scaling factor.
This function acts as a “repulsive” potential (see Figure 2.3). By changing the scaling factor and the
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Figure 2.3: (a) A radial cross section of the obstacle avoidance potential function and (b) the speed assigned
by this function. N = 50, D0 = 17 and the maximum height of the potential = 1. x axis is in units of cm
while the z axis is in cm2/s

cutoff distance, the influence of an obstacle can be changed. The direction of the negative gradient of φobst

(and hence velocity) is perpendicular to the nearest edge of an obstacle. As the distance increases from
the obstacle the negative gradient tends toward zero, until the cutoff distance, when −∇φobst = 0. The
function’s negative gradient approaches infinity as d(x, y) decreases, which causes a stronger “repulsion” the
closer the robot is to the obstacle, preventing a collision.

While these potential functions are standard, both of these functions were required for basic operation
of a simulation and implementation. MATLAB computer code can be found in Appendix A.

1.3 Related work to communication task potentials

Little has been done with specific regard to potential functions and the communications constraints outlined
above. Several papers have investigated components of communication task potentials, but none has provided
a specific potential uniquely addressing the design criteria required for robust communication.

A range constraint for a swarm of robots was considered by Reif and Wang [31] and has been a component
of other research such as Li and Rus [21]. Reif and Wang’s work contained a potential function which had
several properties in common with the Marr Wavelet and helped serve as a basis for the research regarding
the range constraint. However, as the authors point out, their application of the potential function did not
scale linearly with the number of members in a swarm and therefore was not appropriate for this project.
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In addition, it does not allow independent specification of minimum and maximum separation distances.
Maintaining line of sight has been a component of other research ([36, 42, 3, 1]). Yet all of the approaches

to maintaining line of sight rely on a leader and follower robot or only one robot moving at a time. In contrast,
this project is specifically designed to be completely decentralized with no leaders or followers and each robot
continuously moving. For these reasons, new controllers based upon a potential field method of control had
to be designed from first principles for this project.

There is a wealth of scholarship on redundancy of a network in a computer science context ([14, 9, 23,
13]). In addition, the problem of connectedness ([41, page 161]) has been extensively studied using the
mathematical field of graph theory and discrete mathematics. However little literature exists on the spatial
arrangement of mobile nodes to create and maintain redundancy in a wireless network. Grabowski et al. [16]
explicitly consider the creation of a redundant line of sight controller with several robots. However, the
controller is based on only one mobile robot and several stationary ones and therefore not applicable to this
project.

1.4 Discussion

The potential field method of control for task level objectives has several advantages over other methods of
control. Potential fields are easy to visualize and there is a wealth of physical examples from which to draw
inspiration and which can serve as intuitive models. Other methods of control, such as using a compensator,
do not have physical analogies and cannot be easily visualized. To design a potential field, three dimensional
parametric equations are written which define a potential hypothetically characterizing the desired stimulus
response. To assess the potential, simulations of a robot moving according to the negative gradient of this
potential field are run to determine if the actual motion meets the design specifications. This process is
repeated iteratively until the desired motion is achieved.

Potential fields also have some drawbacks, which if not properly accounted for can have undesirable
consequences. Most of these problems arise from the summation or superposition of multiple potentials.
One problem is that potential functions can have different magnitudes or scales. For potential fields with
different magnitudes, the larger magnitude potential field can overpower the smaller. A first step to engineer
around this drawback is normalization. Normalizing the functions is the process of scaling the functions to
a common, arbitrary magnitude so all the potentials will have comparable effects in composition. However,
some functions or their negative gradients, for instance φgoal are not bounded and therefore cannot be
normalized. Since these functions are unbounded the velocity must be capped at a maximum value. See
Figure 2.4 for an example using φgoal; Figure 2.3 also exhibits the property of being capped. The reason for
setting a maximum velocity is two-fold. First, this ensures that a function does not inadvertently overpower
another function. Secondly, it is based on the physical limitations of the robot motors. The motors saturate
at a certain velocity and therefore, it is not an accurate model of the physical systems if the functions
can return a near infinite velocity. In addition, normalization eases the visualization of the composition of
functions, as shown in Figure 2.1 (d).

A second difficulty with the summation of potential functions is that the summation of two potentials
can produce undesired local minima. At a local minimum, the negative gradient is zero and thus the velocity
is zero. These local minima prevent the robot from ever reaching its objective location. Local minima are
always a problem with motion defined by potential functions, but it is especially difficult with a summation
of potentials to not inadvertently create local minima. Even with carefully designed potential fields, in the
summation of a large number of potential fields local minima can unexpectedly occur.

When dealing with a single robot, local minima are a critical design consideration. However, in swarm
robotics, local minima are not as serious. This project relies on several phenomena in order to engineer
around local minima. The first is a non-static potential field. In principle, for a static potential field, the
potential function can be examined for these local minima. A non-static potential field continuously changes,
for example, as the distances between robots change. Therefore, if a local minimum does occur, as the other
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Figure 2.4: (a) A parabola that changes to a line at distance = 3 (b) the speed capped at a maximum speed
of 4.

robots change position, the local minimum could subsequently disappear. Non-static potential fields have
the disadvantage that they cannot be inspected and visualized as easily as static potential fields. Instead,
simulations must be run in order to determine when and if a local minimum occurs. The simulations also
indicate the duration of the local minimum and how seriously it affects the performance of the swarm.

The second phenomena which engineers around local minima is that swarms are designed to be fault
tolerant and can lose a few of their members, e.g. to immobility, yet still accomplish the overall mission.
This project intends to specifically design controllers which are able to function should the swarm lose a few
of its members (Criteria 4:Fault Tolerance).

Finally, as will be described in Section 2.2, potential functions are not summed in a straightforward
manner, reducing the number of spurious minima.

2 High-level control

After the desired body velocities are computed from each of the task potentials, a method needs to be used
to compose the desired body velocities into a final velocity. A simple summation of velocities can result
in undesired motions as explained above. Instead, a high level control architecture is used to combine the
various body velocities into a final velocity.
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2.1 Work related to high-level control

There are several control architectures used to compose task level velocity commands into a single final
velocity command for the robot. A subsumption architecture [7] is based on a rigid prioritization of the
individual task level controllers. This architecture creates algorithms which block all task-level commands
from lower priorities if a higher priority is activated. This method is not well suited for this project because
it forces a prioritization which will not allow the accomplishment of two disparate goals at the same time.

Another architecture is a behavior based model [2]. When more than one task-level command is given the
velocity commands are superposed or added. This technique is designed to mimic actual biological systems.
However, the straight forward addition of two or more task-level velocities does not ensure that either task
is accomplished, and may create local minima.

Another control architecture is the redundant control method which was developed by Professor Bishop
[6]. This architecture is based upon techniques used to control robot arms, and uses the extra degrees of
freedom in the swarm for controlling swarm wide statistics such as the positional mean and variance of the
swarm distribution. While this algorithm is designed specifically for swarms it is only used to achieve swarm-
wide objectives. It cannot control the individual positions of the robots. Thus, this controller does not have
any mechanism in which to ensure that the individual robots are positioned in such a way to guarantee line
of sight or redundancy and therefore is not suited for this project.

Midshipman Tan [37] investigated and created a hybrid controller for a swarm of robots primarily based
upon the redundant method with elements of the other two architectures. However, it too was only applicable
to swarm wide objectives.

2.2 Planned approach

The planned high-level control approach is loosely based on work by Professor Esposito [11]. The basic idea
is that the negative gradient direction is not the only motion direction that will decrease the potential. Any
direction that consistently decreases the task potential can lead to accomplishing the objective. Therefore
there is some degree of latitude in selecting the final velocity.

Essentially, the set of all velocity directions should be constructed for each task objective. One must then
compute the intersection of the sets. If the intersection exists, any velocity in the intersection can achieve
all the task-level goals simultaneously. If the intersection is empty, it is truly not feasible to accomplish all
of these objectives at once and some must be discarded.

The method is outlined in [11] as an abstract proof. The implementation of this method is discussed
in detail in Chapter 3 Section 4. Additionally, an algorithm was created for deciding which desired body
velocities must be discarded in order to achieve a set of velocities for which an intersection exists.

3 Low-level control

The high-level control algorithm returns a body velocity ẋ and ẏ which must be changed into motor speeds
so the robot can be commanded.

A differential drive controls the Koala robot’s course and speed. A differential drive consists of motors
attached to each set of wheels which can be controlled independently. Figure 2.5 details some critical
parameters in the kinematic derivation. Let R be the wheel radii, W is the separation distance between the
left and right wheels, φR and φL are the right and left wheel angles respectively. Also, let x and y be the
coordinates of the point midway between the left and right wheels and θ be the heading angle of the robot
as measured counter clockwise from the positive x-axis.

A difference in speed between the two motors results in the robot turning. Only the motor speeds,
φ̇R, φ̇L, can be controlled so a transform from the desired course and speed to the motor speeds must be
computed. Since the wheels cannot create a velocity perpendicular to their heading, instantaneous motion
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Figure 2.5: A diagram depicting a differential drive

in this direction cannot be achieved. Because of this velocity constraint, the robots are non-holonomic. The
computer simulations used in this project constrain maximum speed but simulate a holonomic robot which
can move in any direction.

A special matrix, called a Jacobian, transforms the motor speeds into rates of change for xy coordinates
and heading, θ. Shown below is the Jacobian equation (see Figure 2.5 for definition of parameters and
variables): ẋ

ẏ

θ̇

 = J

[
φ̇R

φ̇L

]
,

where J is the Jacobian matrix and is defined as follows:R
2 cos(θ) R

2 cos(θ)
R
2 sin(θ) R

2 sin(θ)
R
W − R

W

 .
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However, there are more outputs than inputs using this Jacobian matrix. This means that algebraically,
J is not invertible and so one cannot solve φ̇R, φ̇L for an arbitrary ẋ, ẏ and θ̇. To compensate for this, a
control point must be selected which is located a distance D away from the axle. By controlling the ẋ, ẏ of
this point, a new Jacobian, JD is used to write a new equation [29].[

ẋ
ẏ

]
=

[
R
2 cos(θ)− RD

W sin(θ) R
2 cos(θ) + RD

W sin(θ)
R
2 sin(θ) + RD

W cos(θ) R
2 sin(θ)− RD

W cos(θ)

] [
φ̇R

φ̇L

]
Note that D must be non-zero so the matrix’s columns are linearly independent. By taking the inverse

of this Jacobian, wheel velocities can be calculated from the rates of change of the xy coordinates;[
φ̇R

φ̇L

]
=

[
JD

]−1
[
ẋ
ẏ

]
.
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Chapter 3

Motion Control Algorithm

1 Inter–robot separation distance

There are two design specifications for a ranging potential function for this project. A wireless signal’s
maximum distance for effective communication, dc, is dictated by the power of the transmitter. Therefore,
the robots should remain with inter-robot distances less than dc. The second specification is that the robots
must also maintain a minimum separation distance, ds, between each other to prevent inter-robot collision.
The potential function must meet both design specifications

One candidate potential function which appears to meet both specification is the Marr Wavelet. This
function is defined by:

φMarr(d(x, y)) =
C

2πσ
(h− d2(x, y)

σ2
) exp

(
−d2(x, y)

2σ2

)
where d(x, y) is the distance between the two robots, and C, h and σ are parameters defining the maximum,
minimum and the dispersion of the function. Originally, this wavelet was introduced to help explain biological
vision processing [24]. Though the wavelet was never intended as a potential function for robot motion
control, it has many features which make it well suited for this application.

The function is set so that its maximum value is centered on the location of a target robot. When another
robot evaluates this potential, the large value of the negative gradient near the center of the function at the
target should inhibit the two robots from colliding. Farther from the location of the target robot, the negative
gradient of the function points toward the location of the target robot and thus has the effect of pulling the
robots together for communication. Under the influence of this potential, the robot will settle at the location
of the minimum value of the potential. The location of the minimum value for the function represents the
desired distance of separation for avoiding collision and effective communication.

Simulation makes obvious that the Marr Wavelet is not effective at bringing other robots into communica-
tion range. At large values of d(x, y), the negative gradient of the Marr Wavelet approaches zero. Therefore,
the evaluating robot will have almost no velocity which would bring it within communication range of the
target robot.

A second function which could correct the deficiencies of the Marr Wavelet is a shallow parabola, defined
by:

φsp(d(x, y)) = kd2(x, y)

where k � 1 and d(x, y) is the distance between the robots.
The magnitude of the negative gradient of a shallow parabola increases as the distance between the robots

increases. Thus the shallow parabola potential function can be used to maintain range for communication
even when the robots are at great distances apart. At small values of d(x, y) the negative gradient approaches
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Figure 3.1: Function φrange with ds = 1dm and dc = 3dm. y axis has units of cm2/s

zero and thus, this function does not work well for maintaining the separation distance ds. The Marr Wavelet
function works well for avoiding inter-robot collision, but fails at long distance, whereas a shallow parabola
potential works well at long distances and has negligible effect at close distances.

In order to capitalize on the advantages that each of these functions present, a new function, φrange,
composed of the best of both is created. In addition, as long as the robot is between the two values of ds

and dc, the ranging potential function should have −∇φrange = 0. Thus: (Figure 3.1)

φrange(d(x, y)) =


φMarr(d(x, y)) d(x, y) < ds

0 ds ≤ d(x, y) ≤ dc

φsp(d(x, y)) dc < d(x, y)
.

MATLAB computer code can be found in Appendix B. The advantages of this function include:

• successfully meets the two design specifications of maintaining a minimum separation distance and a
maximum communication distance i.e. stable minimum when ds ≤ d ≤ dc;

• separation distance and maximum communication distance can be set independently,

• easy to change values based on differing conditions or requirements;

• the function is smooth so that a derivative exists everywhere; and

• no extraneous velocity returned when robot is within specifications.

2 Line of sight

The design criteria for line of sight control is based upon the following scenario: as Robot A loses line of
sight with Robot B (Fig. 3.2), Robot A should have a velocity which maintains or re-establishes line of
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sight. Conceptually then, for Robot A to maintain line of sight, the potential function should return a gentle
velocity out of the occlusion zone of the obstacle with respect to Robot B. It is important to note that in the
full scenario, Robot B will also be moving and evaluating an identical control law which is governing Robot
A.

Figure 3.2: The example scenario for the line of sight problem with a stationary robot and an obstacle.

A solution to the above scenario is encoded in the potential function φLOS(Fig. 3.3). An upper and
lower occlusion angle (θ) and a radius from the stationary robot describe the occlusion zone mathematically
with polar coordinates. The only information Robot A needs to generate the potential function is Robot
B’s position and the shape of the obstacle. For this function, it is more instructive to define the negative
gradient directly. For φLOS, the negative gradient will always point perpendicular to the nearest occlusion
line, so that the robot exits the occlusion zone in the quickest manner possible. If d(x, y) is the Euclidian
distance to the nearest occlusion line (which has an angle of θ) and s is a small positive number, then for
d(x, y) + s > 0,

−∇φLOS =
[
Vx

Vy

]
∝

[
cos(tan(θ))(d(x, y) + s)
sin(tan(θ))(d(x, y) + s)

]
.

If d(x, y) + s ≤ 0 then −∇φLOS = 0. The offset s is included so that a small velocity is present outside of
the occlusion zone to help maintain line of sight. φLOS is the best choice for maintaining line of sight for
these reasons:

• velocity is perpendicular to occlusion lines so line of sight is re-established in shortest amount of time
possible;

• a proportionate velocity to distance out of communication range; and

• an ‘offset’ to help maintain line of sight.
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Figure 3.3: A simulation of a robot moving under φLOS. The velocity field created by −∇φLOS is marked in
blue. The initial position of the robot is marked with an o and the final position is marked with an x. The
red lines mark the occlusion lines. xy axes are in units of decimeters

MATLAB computer code can be found in Appendix C.
Simulations revealed that the function works extremely well for only one robot evaluating the potential

function. It does not work well when both robots are evaluating and moving according to the potential
function. In some scenarios, the robots will continuously rotate around an obstacle as each is moving to a
different side to try to re-establish line of sight. In other cases, if the obstacle is positioned between the
robots and a goal, both robots will come to rest in a local minimum created by the goal function and the
line of sight potential function. This local minimum means that the robots cannot complete their goal if line
of sight is to be maintained.

The solution to this problem is to emulate in the original scenario (Figure 3.2). When Robot A evaluates
φLOS a body velocity is returned. In addition, when Robot B evaluates the potential function (since it is
in the occlusion zone of A), a velocity will also be returned. However, Robot B’s returned velocity can be
suppressed so that the velocity equals zero. This scheme of suppressing one robot’s returned velocity requires
that both Robots A and B are be in agreement as to which one of them will suppress the velocity returned
by φLOS. Suppressing a velocity does not mean that Robot B will be stationary, but rather that the desired
velocity to maintain line of sight with Robot A will equal zero. All other desired body velocities from the
other potential functions will still exert an influence on Robot B.

To determine which robot suppresses its returned velocity the number of communication links for each
robot is evaluated. The robot which has a greater number of communication links suppresses its returned
velocity. Moving around the obstacle to establish line of sight with the other robot might break other
communication links and since the overall goal is to maximize the communication between robots, the
greater number of communication links should be preserved. Therefore, the robot with the greater number of
communication links will continue on its original course to preserve its links while the other robots maneuver
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to maintain line of sight. If the number of communication links is equal, then an arbitrary measure, such as
the serial number is used to determine which robot suppresses the returned velocity.

It is important to note that this scheme does require a minimum of message passing between the robots.
Each robot needs to pass to the other the number of communication links it has and possibly its serial
number. Using a position dependant characteristic (such as which robot is closer to the goal) was considered
as a method of determining which robot should suppress its returned velocity. The advantage of this
method is that it does not require message passing, but only uses the information the robot already has,
namely the position of the other robot. However, this type of scheme does not consider the number of
communication links per robot and thus does not maximize a robust communication network (Criteria
2:Robust Communication).

This message passing does not violate design Criteria 3:Distributed Operation which states that “each
robot makes its own motion control decisions based on locally available information.” All information can
be obtained locally by communicating with the other robot as the two robots approach a situation which
could interrupt line of sight communication.

When this control law is combined with other task potentials using the communication variant of the par-
allel composition controller, line of sight will always maintained. Simulations confirm this result (Figure 3.4).
MATLAB computer code for this parallel composition controller can be found in Appendix E and L.
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Figure 3.4: A simulation of a two robots moving according to the communication variant control law (Sec-
tion 4) so that they always maintain line of sight as they move towards the goal. xy axes have units of
cm.
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3 Redundancy

At a minimum, a communication network is redundant if each robot maintains at least two communication
links. If this condition is met, a single robot could fail, and yet all robots would still be in communication
with at least one other robot. By requiring more than two connections per robot, a stronger redundancy
can be created. Later in Chapter 5 the amount and degree of redundancy in a network is examined in more
detail.

A first attempt at achieving redundancy was to create a potential function which would orient the
network nodes in such a way as to create redundancy. After careful study and simulation, this approach
was abandoned as it proved to be untenable and a more efficient method of creating redundancy was found.
However, the efforts of this first attempt warrant some discussion. It was discovered that the type of functions
explored cannot be scaled linearly and therefore are not good potential functions for swarm robotics.

3.1 Potential Functions for Redundancy

A first attempt at achieving redundancy was to have three robots moving toward a common point. The
hypothesis is that the robot motions are coordinated in moving towards a common point, and thus would
establish redundant communication expeditiously. To avoid inter-robot collisions as they approach the
common point, a ranging potential function such as the Marr Wavelet would be centered on the common
point to keep the robots at a safe distance from each other.

The class of geometrical constructions known as the centers of a triangle serve as a natural starting
place for finding a common point for three robots. The locations of the robots would serve as the vertices
of the triangle and a center of this triangle would be the common destination point for the robots. By
carefully selecting which of the many possible centers serves as the destination point, other advantages are
attained. While the main focus is still on establishing communication, the properties of a center which could
be advantageous to the swarm determined which of the many possible centers were used.

The circumcenter is a center of a triangle which is also the center of a circle passing through the three
vertices. Therefore, this center is equidistant from all vertexes. Because the distances are equal, the robots
will arrive at the circumcenter simultaneously, no robot waits for the others and so it seems redundant com-
munication should be established as quickly as possible. However, simulations with this function demonstrate
that this is not a viable option for quickly establishing redundant communication. For an obtuse triangle
the circumcenter lies outside of the triangle. For very obtuse triangles, the circumcenter is located a large
distance from the vertices (Fig. 3.5). Thus, for an obtuse triangle, the common point of the circumcenter is
a poor choice for quickly establishing redundant communication.

Another center of a triangle which has attractive properties is the Fermat point which is also known as
the isogonic or Rorricelli point. This center minimizes the sum of the distances from the three vertices.
In addition, the three angles between the lines connecting the vertexes to the Fermat point are all 120
degrees. [8] (Fig. 3.6)

The Fermat point only minimizes distances on triangles with all angles less than 120 degrees. For very
obtuse triangles, the Fermat center no longer lies inside the triangle, instead the point of minimum distance
is the vertex which has an angle of 120 degrees or greater.

The advantage of using the Fermat point is that it can minimize energy expended by the swarm. The
farther a robot travels, the more energy is used. Minimizing the sum of the distances each robot travels
also minimizes the total energy expended by the swarm. One robot may expend more energy moving to the
Fermat point, but the total energy used by the system is minimized. In swarm robotics, the focus is not
on individual energy expenditure, but rather on aggregate energy used by the swarm. Thus, the minimal
distance point is of special interest to swarm robotics.

Simulations demonstrated that using the Fermat point as a common point works well for three robots.
However, simulations also reveal that this approach cannot guarantee redundancy for swarms larger than
three members. When a swarm has more than three members, the robots do not necessarily group themselves
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Figure 3.5: The robots are located at the triangle vertices while the “+” marks the circumcenter. As can
be seen, for an obtuse triangle the circumcenter lies outside of the triangle. Note the different scale of the
images.
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Figure 3.6: A triangle detailing how the Fermat center is constructed. The main triangle is plotted with
solid lines with its Fermat center marked with a small circle. The dashed lines are used for constructing the
Fermat Center.

into non-overlapping triangles. Thus, not all three robots in a triangle are moving to the same common
point, causing some robots to not be in redundant communication. MATLAB computer code related to this
simulation can be found in Appendix D.

The approach of using a common destination point based on centers of a triangle is appealing because
other advantages can be achieved from the properties of the center. However, unless the robots are forced
into non-overlapping groups of three, this approach cannot guarantee redundancy.

Forcing the robots into non-overlapping groups of three is not a viable option because it is not scalable.
Even if the number of members in a swarm is a multiple of three, grouping the robots does not scale
linearly. As the number of robots in a swarm increases, the time required to group the robots becomes
unreasonable. Grouping the members intelligently, based upon their spatial arrangement, rather than on
something arbitrary, like a serial number, requires an impractical amount of time. In order to group the
robots successively, based upon which three have the shortest distances between them, requires

3
(

N !
3!(N − 3)!

+
(N − 3)!

3!(N − 6)!
+

(N − 6)!
3!(N − 9)!

+ . . .

)



32

calculations of distance where N is the number of robots in the swarm. For just 12 robots in a swarm, each
robot must perform 975 calculations of distance each iteration.

A fast central processor could perform the calculations necessary to group the robots, so that less powerful
hardware on board the robots is not overtaxed. Yet this violates a central principle of this project which is
to keep the control decentralized. Each robot should be autonomous and not rely on calculations performed
by a central processor.

3.2 Method for achieving redundancy

However, the robots do not necessarily need to be moving to a common point to achieve redundancy. Instead,
as long as each robot is in communication with at least two others, then redundant communication has been
achieved. Thus, a robot should be constrained in its motion so that it is attempting to maintain range and
line of sight with two robots – regardless of how the other robots are moving. This means that each robot
will be constrained by four velocities: a pair of range and line of sight task velocities for each of the two
robots its trying maintain communication with. A new potential function is not needed, but rather a method
for using these velocities as a constraint on the robot’s motion. The planned high-level control method of a
parallel composition controller can easily be adapted to incorporate 4 communication velocity constraints.
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4 Parallel Composition Controller

4.1 Theoretical approach to composition of task velocities

The theoretical approach of the high level control is that the negative gradient direction is not the only
motion direction that will take a robot to the task’s goal. Any direction that consistently decreases the task
potential can lead to accomplishment of the objective. Therefore there is some degree of latitude in selecting
the final velocity. Each task velocity constrains the final velocity (ẋ, ẏ) to be such that:

−
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∂φ
∂x , ∂φ

∂y

] [
ẋ
ẏ

]
= φ̇ ≤ 0.

Geometrically this means that at any point, a velocity within ±90◦ from the negative gradient will decrease
the task potential (Figure 3.7). Thus the desired body velocities are constrained to a 180◦ arc. By exploiting
this latitude for several vectors, it can be possible to find one single vector that will consistently decrease all
of the task potentials and thus, one direction will meet several of the goals simultaneously.

Figure 3.7: Any vector within 90◦ of the negative gradient will decrease the potential function.

However, not all sets of vectors can be reduced to one composite velocity which decreases all potentials.
Thus, it must be determined if a set of task vectors are feasible. In order to be feasible, all vectors must lie
on the same half plane which is determined by satisfying the following statement:

(∃Vi)|(∀Vj)[(Vi × Vj) ≥ 0 ∨ (Vi × Vj) ≤ 0].

If no Vi exists, then the algorithm described in the next section is used to discard some of the velocities until
a feasible set of vectors is constructed.

Geometric speaking the above equation is equivalent to taking the intersection of all 180◦ velocity con-
straint arcs (Figure 3.8) and determining if the intersection is non–empty. A non–empty intersection is the
cone of feasible velocities which can decrease all of the potentials. If the intersection of the arcs is empty,
then again, some of the task potentials must be discarded.

The problem of determining if a set of 2-D vectors is feasible simplifies to examining if there exists an
exterior angle which is greater than 180◦ (Figure 3.9). If this is the case, then the intersection will be
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Figure 3.8: The intersection of all constraints determines the set of feasible velocity directions.

Figure 3.9: (a) a set of vectors for which it is feasible to compose into a final velocity to decrease all potentials.
(b) a set of vectors with no such feasible direction, as determined by the exterior angles.

non-empty and a velocity can be found which decreases all potentials. The two vectors which make up this
exterior angle are the limiting vectors and are used to construct the composite velocity.

Given a set of feasible velocities a final composite velocity is composed based on the ideas of Esposito
and Kumar [11]. However, Esposito and Kumar only consider a direction field (i.e. only unit vectors) rather
than a velocity field. Secondly, the authors assign a rigid prioritization of only two directions to compose a
final velocity.

There can be any number of vectors in the final set of feasible vectors but only two vectors from this set,
the limiting vectors, determine which direction will be the final velocity. The inside orthogonal vectors to
the limiting vector are labeled bias vectors (Figure 3.10). These vectors represent the maximum deviation
from the limiting vectors which will still decrease that task potential. Thus, the arc between the bias vectors
defines an arc of velocity directions which will simultaneously decrease all potentials. Next, within this arc,
a direction and magnitude for the composite velocity must be chosen. To accomplish this, the magnitudes
of the limiting vectors are used with the direction of the closest bias vector (Figure 3.11). The resulting
vectors are then summed using vector addition. By using vector addition, the magnitudes, and therefore,
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the urgency of the task velocities are reflected in both the magnitude and the direction of the final velocity.

Figure 3.10: The arc of feasible directions are determined by the angle defined by the bias vectors.

Figure 3.11: The composition of the final velocity based on the magnitudes of the nearest limiting vectors
and ±90◦ direction from the more distant limiting vector.

A special case of this composition scheme is when the limiting vectors are less than 90◦ apart. In this
cases, both limiting vectors will lie within the arc of feasible directions (Figure 3.12). Therefore, vector
addition of the limiting vectors can be used to compose a final velocity.

4.2 Algorithm for finding a feasible set of vectors

Should the set of task potentials not result in a feasible set of vectors, an algorithm is needed for determining
how to compose a subset of vectors which is feasible. This algorithm is illustrated in Algorithm 1.

At each iteration a robot evaluates the potential functions for the go-to-goal function and obstacle
avoidance which each return a suggested velocity (or velocities in the case of multiple obstacles). In addition,
a robot individually evaluates the range and line of sight potential functions with every other robot. These
potentials return a suggested velocity LOSi and Ri for the ith robot. The suggested velocity is based on the
negative gradient as descried in Chapter 2 Section 1. From this set of suggested velocities a feasible set of
vectors must be found so a final velocity can be composed in the manner described above.
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Figure 3.12: The composition of the final velocity for the case when the limiting vectors are less than 90◦

apart.

Algorithm 1 The Algorithm for generating a feasible set of vectors
P ← set of high priority vectors
Csum ← [(LOS1 + R1), (LOS2 + R2), (LOS3 + R3), . . . ]
while P is infeasible do

P = P −min(P )
evaluate P for feasibility

end while
Ā = P
M ← number of desired communication links
Q← number of actual communication links
for (M −Q) do
∃(i)[(LOSi + Ri) = min(Csum)]
if LOSi ∪ Ā is feasible then

Ā = LOSi ∪ Ā;
end if
if Ri ∪ Ā is feasible then

Ā = Ri ∪ Ā;
end if
Csum = Csum − (LOSi + Ri)

end for

Given a set of infeasible vectors, the first step to finding a feasible subset is to group the vectors based on a
loose prioritization scheme. The high priority signals include: go-to-goal, obstacle avoidance and maintaining
the minimum separation distance between robots. The lower priority signals are all of the communication
vectors.

The high priority signals are checked to see if by themselves they can be composed into a feasible velocity.
If so, these vectors are labeled Ā – the set of vectors which will eventually be composed into a final velocity.
If not, then the high priority velocity with the smallest magnitude is discarded. The potential functions are
defined in such a way so that the larger a velocity’s magnitude is, the higher the urgency. Thus, discarding
the smallest vector is discarding the least urgent velocity. At the next iteration, all potential functions will be
evaluated and so this velocity is only discarded for one iteration. This process of discarding vectors continues
until a feasible set of high priority signals is found which is labeled Ā. A feasible subset is guaranteed to be
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found because at a worst case, there will be two vectors and for all sets of two vectors a feasible velocity can
be found. 1

Next, the communication subroutine is used to find those communication velocities, LOSi and Ri, such
that the union with Ā is still a set of feasible vectors. The actual number of communication links per robot,
Q, is compared against M , the desired number of communication links per robot. The communication
subroutine seeks to find velocities which will put the robot in communication with M−Q more robots. Thus
by following these velocities eventually M = Q.

This project requires that both range and line of sight be attained before communication is established.
Thus, both range and line of sight velocities for the ith robot are evaluated for feasibility together. The
pair of communication vectors which require the least amount of energy (i.e. the smallest magnitude of
LOSi + Ri) are selected first. If either LOSi or Ri are feasible with the current Ā, the vector(s) is/are
appended to Ā and a counter is incremented by 1. Successive feasibility tests of LOSi and Ri with Ā are
conducted until the counter is equal to M −Q or no more vectors are left to be tested.

However, LOSi is tested for feasibility first. This induces a slight bias towards completing line of sight
before the range constraint. While LOSi may be feasible with Ā, Ri may not be feasible with the set of
vectors LOSi ∪ Ā. If obstacles are assumed to block communications (such as a dense wall) then decreasing
the range without being in line of sight will not help establish communications, the robots must first be line
of sight before being in range will establish communication. If LOSi is not feasible then Ri is still examined
to see if it is feasible with the current Ā.

When the counter equals M − Q or no more communication pairs remain to be tested, Ā is composed
into a final velocity in the manner described in the previous section. This algorithm achieves the goal of
meeting the dual, and sometimes conflicting requirements of executing a primary mission while at the same
time establishing a robust communication network.

4.3 Communication Variant

In addition to the above algorithm, a communication variant was tested to determine its effect on creating a
robust network. The algorithm is exactly the same, except that the go-to-goal function is no longer considered
a high priority. Instead, there are three classes of priorities. Class one consists of obstacle avoidance and
maintaining minimum separation, essentially the requirements for safe navigation of the robots. Class two
consists of the communication vectors and the third class only contains the go-to-goal function.

The algorithm proceeds in the same manor described above for the first two classes. Once an Ā has been
determined, the go-to-goal suggested velocity is checked for feasibility with this Ā. If feasible, this suggested
velocity is amended to Ā and the final composite velocity is calculated. However, if it is not feasible, Ā is
immediately calculated into a final velocity.

The motivation for testing this controller was to see the effect of prioritizing communication over the
go-to-goal function on the overall effectiveness of the swarm in completing its dual missions. Secondly, it was
motivated to develop a controller which could guarantee that line of sight could be achieved. While LOSi

by itself would establish line of sight, it is often discarded by the first controller. The line of sight potential
is evaluated when the robots are around an obstacle. In these cases usually the obstacle avoidance function
is returning a non-zero vector. Thus the high priority vectors of the go-to-goal and obstacle avoidance are
activated and almost always ‘lock out’ the line of sight vector from being feasible. By changing the go-to-
goal function to be a lower priority than the line of sight velocities, the go-to-goal function will be infeasible
and thus discarded. Simulations demonstrate that using this controller will always guarantee line of sight.
Simulations verify this result, (Figure 3.13). MATLAB computer code for both controllers can be found in
Appendix E.

1The worst case is two vectors exactly 180◦ apart. For this case, there are two vectors (±90◦ of the vectors) which neither
decreases nor increases the potentials. None the less, in the worst case the vectors can be composed into a velocity
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Figure 3.13: Two simulations of a two robots moving according to either the original or the communication
variant of the controller. The starting and ending positions of the robots are the same in each simulation.
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Chapter 4

Experimental Setup

Simulations provide much useful information, and serve as a flexible test bed for examining several different
scenarios. A simulated environment can be easily rearranged to provide several different configurations of
obstacles and several different numbers of robots. However, simulations do not provide the experience and
insight of testing the controller in the real world. A second phase of testing and experimentation of the
controller is to implement the controller on the Koala robots.

The Weapons and Systems Engineering Department purchased eight Koala robots (see Figure 1.2) from
the Swiss company K-team. For the most part, these robots have not been used in any projects, experiments
or research. No one in the department had any experience programming or working with them. The robots
came with very little documentation and instructions. The operation and configuration of the robots had to
be deduced through experimentation and testing.

Several distinct challenges had to be overcome before the robots could be used for demonstrations, testing
and experimentation. The basic experimental set up is shown in Figure 4.1 with a detailed block diagram
in figure Figure 4.2. Whenever possible, standard techniques were used for the experimental setup so that
a majority of the research time could be spent on researching and evaluating the motion control algorithm.
However, project specific implementations had to be designed and some non-standard techniques were used.

1 Localization via computer vision

The first challenge to creating the necessary experimental setup was the problem of localization, i.e. a robot
knowing its position in relation to the environment. Localization is a principal challenge in any mobile
robotics experiment. The purpose of this project is to investigate a novel controller to accomplish the two
disparate goals of robust communication and primary goal completion, not to investigate a novel technique
for the problem of localization. Providing a solution to the problem of localization was a necessary step for
creating an experimental setup which could test and investigate the novel controller.

The solution designed for this project was to employ a single ceiling mounted overhead camera to re-
produce the position information which could be gained from GPS receivers or local sensors. Reproducing
position information in this manor is a common approach and allows for the complex problem of localization
to be dealt with using the standard techniques of computer vision. The design of the computer vision system
required interfacing a camera with the MATLAB environment so image processing could be facilitated. In
addition, a scheme for identifying and orienting each robot had to be designed.
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Figure 4.1: A diagram of the overall experimental setup.
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Figure 4.2: A detailed view of the steps necessary for the final experimental setup.
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1.1 Computer vision hardware

The camera used in the vision system is a FireFly2 from Point Grey Research. This camera was selected
because it can provide a high resolution (640×480 pixels) color image in standard formats for image processing
(See Appendix F for technical specifications). Using the image acquisition toolbox for the MATLAB high
level mathematical programming language in conjunction with the IEEE 1394 device driver, a MATLAB
program is able to capture an image which can be easily used for image processing. The camera is hung
from the ceiling using a mounting bracket created by George Burton in the Machine Shop, see Figure 4.3.
This bracket allows the camera to be hung from the drop-ceiling struts in a secure manner so that the lens is
parallel to the floor. This maximizes the amount of workspace area the camera can observe. The overhead
position also allows the camera an un-obstructed and non-interfering view of the workspace. The resolution
provided by the camera is 1pixel/cm2 with an overall workspace area of ≈ 7.7m2.

Figure 4.3: The mounting bracket.

1.2 Image processing

The identification scheme designed for the robots consists of tagging each robot with two blocks of the same
unique color, a large block on the aft end and a smaller block on the forward end. The vision system must
be able to differentiate between the different robot colors and background color. Color segmentation is an
image processing technique which separates and sorts the colors in an image. Most digital images contain
three layers of data: a red, green and blue layer1. Each color layer is an array of data which contains the
intensity of that color at every pixel. When the three layers are superimposed, a full color image is created.

1In the actual implementation, the YUV (Luminance, Blue Chrominance, Red Chrominance) color layer scheme was used.
This color scheme was selected because when the camera used this scheme it captures less pixels per image and thus allowed for
a faster processing time. Though the image resolution is reduced, this did not significantly effect the accuracy of the localization.
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Segmenting an image involves changing a color intensity layer or layers, which can have values ranging from
0 to 255 to a binary image which only contains values of 0 and 1. Once an image has been segmented to a
binary image, several properties can be extracted by image processing algorithms.

For instance, creating a binary image of only purple pixels would require finding all pixels which have a
red intensity > 200 and also have a blue intensity > 200. All those pixels which meet the purple criteria
are set to 1 while all those which fail are set to 0. A binary image is created for each color of interest. The
vision system needs to be calibrated for each color of interest and the lighting conditions of the workspace.
Appendix H contains a table of the color layer intensity values used to segment each of the colors of interest.

Within a binary image an object is defined as a contiguous region of pixels which have a value of 1.
Because noise in a binary image consists of objects which have a small area, noise can be effectively filtered
by only using those objects with relatively large areas.

A filtered binary image should only contain two objects which correspond to the large and small blocks
of color on the robot. As long as the objects’ areas are significantly different, they can be processed to
determine the robot’s position and orientation. The property of an object’s centroid is analogous to a two
dimensional object’s center of mass. Thus, this property is used for finding the center location of an object.
Since the larger block is roughly centered on the robot, its centroid is used as the position of the robot in
the workspace. The smaller block’s centroid is used as the control point for low level control (see Chapter 2
Section 3). In addition, a vector from the centroid of the larger block to the smaller block determines the
orientation of the robot.

In addition to the identifying the robots, the vision system also determined the location and edges of the
obstacles. Since the obstacles are stationary, the vision system only needs to determine their location at the
start of the experiment. In this project the obstacles were green in color to separate them from the robots.

By profiling and streamlining the MATLAB programs (Appendix G), and rewriting some of the image
processing library functions, the base station was able to identify and orient the robots in < .1 seconds. This
speed is fast enough to allow for real time updates of the robot’s position.

2 Communication between the base station and robot

The next challenge in the experimental implementation was to develop a method for transferring data
between the base station and each robot. The information extracted from the image processing programs
needed to be transmitted through a wireless network to the robot’s hard drive so that the robot could update
its motion based on the new position information gleaned from the camera.

Each of the robot’s PCs have a wireless Ethernet card which serves as the physical layer of a network
architecture. In order to transfer the files from the base station to the robots, file transfer protocol (FTP)
or HTML-based approaches were considered. Ultimately, a mapped network drive of the hard drive of the
robot’s PC onto the base station was the appropriate solution. Using this approach, the image processing
or motion control programs could write the extracted data directly to the robot’s PC’s hard drive. This
approach is easier to integrate with a control program written in the C programming language and also
provided a quicker means of transferring information between the base station and robot than an FTP or
HTML approach.

The base station, which uses the Windows operating system, requires that the software program Samba
be running on the Linux PCs. Samba uses the TCP/IP protocols to allow a Windows PC to interact with
a Linux PC as if the Linux PC was a Windows file server [39]. By installing Samba on the Linux PC, the
base station, acting as a host, was able to access the hard drives of the Linux PCs as seamlessly as if the
Linux hard drives were on a Windows machine.

Another approach considered was converting the base station into a Linux machine. However, this would
require reformatting the base stations hard drive, installing and configuring Linux, installing MATLAB for
Linux and finally networking the Linux base station and robot PCs. Linux is an open source operating
system without standardization of user installation and configuration. Linux is purposefully non-centralized,
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therefore many of the components of the operating system must be downloaded, installed and configured
individually. There are few commercially available Linux products and software available. Therefore, open-
source software, with scant documentation must be used. Without substantial experience, these factors make
it difficult to install and correctly configure a Linux operating system for a specified application as required
by this project. Even if all of the above steps had been completed in a satisfactory and timely manner, it
is doubtful that the special device drivers necessary for the overhead camera used in the project would run
under Linux.

3 Programming and control of Koala Robots

The Koala robots have two on-board computers. The first is an embedded system which consists of a small
amount of flash ROM, a Motorola 68K micro-processor and various robot hardware such as motor control
circuits, sensors, analog to digital converters, etc. The Motorola 68K micro-processor controls the motors,
sensors, and internal operation of the robot. The flash ROM can be loaded with a user’s programs. However,
the programs on the flash ROM must be written in a highly specific robot language. In order to write a
program in the robot language a cross-compiler is need to change a program written in the C computer
language into the robot language. [5]

The second computer that is on board the robot is a standard Pentium, 266 MHz personal computer. The
computer uses a 20GB hard drive and a wireless Ethernet card. This computer uses laptop-like components
that are much smaller than their desktop counterparts so the robot can easily carry the computer. With
an externally attached monitor, keyboard and mouse, this becomes a fully functional PC running the Red
Hat Linux Operating System version 7.1. Linux was preloaded on the computer. Because of the limited
processing ability of the computer, Linux is used because the operating system overhead can be easily limited.
The two computers on the robot are only connected together by a serial line.

There are two ways for the user to control the robot. The first is a compiled method of control where
a program is written and cross-compiled on the Linux PC. The program is then downloaded via the serial
line to the robot’s flash ROM. The robot then executes this program until the program ends or the robot is
shut off, which ever comes first. A second way for the user to control the robot is an interpreter approach.
Simple robot language commands are typed into the Linux PC and then sent directly down the serial line
for the robot to execute. Only one command can be sent at a time and must be in the highly specific robot
language. In addition, convenient programming constructions such as loops and if-then statements cannot
be used.

Since the interpretive method of control does not allow the robots to be autonomous, but rather reliant
on a user typing commands, the compiled approach must control the robots. This requires the installation
a cross-compiler onto the Linux PC. The cross-compiler allows a user to write programs in the standard C
programming language rather than the hardware specific and tedious robot programming language. The
cross-compiler then translates the C code into the robot programming language which only then can be
downloaded and executed on the embedded system.

In addition, a method was needed which could allow the Linux PC to communicate to the embedded
system using the serial line. The embedded system has several pre-set modes and speeds of serial line
communication. However, two way communication between the PC and the embedded system could not
be established. Therefore, compiled programs running on the embedded system could not be debugged and
troubleshot in an efficient manor.

An investigation of two way communication on the serial line was undertaken using the interpreter
control method because it provided instant feedback. When a user types a command into the Linux PC, the
embedded system executes the command and sends a response. At this point, a better use of the computers
for control was designed. A small C program could be written which would run on the Linux PC and mimic
a user typing in commands. This approach streamlines the process of transferring data from the base station
to the embedded system. The Linux PC would act as a relay between the base station and the embedded
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system. Without the Linux PC acting as a relay, the embedded system would have no way to receive the
new information which would be coming from the base station.

Since the Linux PC does not have MATLAB and given the processing power, it would be inefficient at
executing it, all the potential functions, controllers and algorithms would need to be converted and compiled
into the C programming language. Converting these functions and controllers also meant that any subsequent
design or modification of the controllers tested and modeled in MATLAB would require a new conversion
and compilation into the C programming language.

However, a more time effective method of implementing the controller was designed. The brute strength
of the base station’s processing power was used to calculate the control algorithm for each of the robots in
the experiment. The base station could run MATLAB efficiently and therefore the programs did not need
to be converted to the C programming language. The base station was used to calculate the wheel velocities
of the each of the robots. It is important to note, that this system of implementing the control system does
not violate a central premiss of the project which is to keep control decentralized (Criteria 3:Distributed
Operation). While the base station does all of the calculations, it does each calculation based only on the
information each robot would have. Allowing the base station to do the calculations is merely an efficient use
of the computing power available. With more powerful processors on board the robots, or time to convert
the programs to C, there is absolutely no reason why the control calculations could not be performed on
board the robots. Appendix J contains the MATLAB computer code for these sections.

The robots themselves still run a small C program running on the Linux PC to collect and transmit the
calculated wheel velocities. Once the base station had finished calculating the wheel velocities for a robot,
these values are written to a file on the robot hard drive (as discussed in Section 2). The small C program
running on the Linux PC reads this file and writes the values down the serial line to the embedded system.
The embedded system takes the wheel velocity values and translates them into motor voltages (Figure 4.4).

Figure 4.4: The robot hardware.

A timing file was used in order to synchronize the communication between the robot and the base station.
When the base station was finished calculating the wheel velocities and writing them to a file, the base station
also wrote a timing file on the robot’s hard drive. The timing file contained no data, but was used as a flag
to tell the small C program running on the Linux PC that new wheel velocities had been written. When the
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C program was finished reading and writing the values to the serial line it would delete the timing file. Only
after the timing file had been deleted would the base station write new values for the wheel velocities. The
timing file kept both the Linux PC and the base station synchronized so that only one of them was trying
to the read/write wheel velocities at a time. See Appendix I for the C code used to accomplish this.

4 Experimental Results

The most important result of the entire experimental setup was to prove that the motion control algorithm
is efficient enough for a full scale, real-time implementation. The velocity information for a single robot was
updated at approximately 7 times a second. This is well above the stated goal of greater than once per
second. The update time includes the image processing time required to localize the robot, determine the
velocity based on the controller, write the data and set the motor voltages. In an actual system all of these
tasks or variants of them would need to be performed. The update rate of 7 Hz is an acceptable update rate
for a autonomous robotic system. The proof of concept demonstration substantiates one of the goals of the
project which was to create an algorithm efficient enough to be implemented in a real-time robotics system
(Figure 4.5).

The implementation worked seamlessly in all aspects except at the lowest level of control. There were
no bottlenecks in the vision system, the calculation of the velocities or in the communication between the
robot and the base station. However, the hardware system had a difficult time setting the required motor
voltages. The requested motor voltages were within specifications but the battery level could not meet the
stated voltages.

The batteries consist of rechargeable Nickel Metal-Hydride (NiMH) cells with special controlling hard-
ware. Unfortunately, the batteries have not been used extensively for two years. Unless NiMH are charged
and discharged regularly, they lose their ability to store and deliver charge. This inability to hold a charge
resulted in drastically reducing the amount of time the experiments could be run and also the number of
robots which could be used in an experiment. In addition, the amount of motor torque available is tied
to the amount of current which is delivered to the motors. As the charge level on the battery drops, the
available torque also drops. With low torque, the robots had a difficult time executing a normal turn and
so fresh batteries had to be swapped into the robots so that they could complete the turns required by
the controller. Each swapping of a battery required that the robot be shutdown, restarted and the control
programs re-initialized.

The batteries are not a standard battery which can be commercially purchased. New batteries must be
purchased from the original company at exorbitant prices ($ 1,089). The batteries contain hardware which
cannot be reproduced or reverse engineered. However, a solution to the battery life problem was designed
by replacing the individual cells within the battery. This was not a factory intended procedure, but appears
to be a cost effective way to extend the life of the batteries. See appendix K for the technical specifications
of the individual cells used for replacement. The total cost of replacement was only $67.

Because of the issues of the battery life, it took approximately two hours to have one experiment run
to completion. The experimental time would not allow enough experiments to be run in order to collect
meaningful data given the timeline of the project. In addition, because of the motor torque issues, it would be
nearly impossible to control the experiments so that they would be repeatable. The results of the experiment
would be more dependant on the charge level of the battery rather than the ability of the controller or control
laws.

The implementation phase of the project was completed, delivering the stated objective of creating a proof
of concept demonstration of the controller on physical robots. Because of the battery life issue, pursuing this
avenue of research would not be prudent. Instead a more in depth focus on simulation was explored since
this would produce the most fruitful research.
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Figure 4.5: Three still frames from an experiment showing the robots coming together for communication,
avoiding obstacles (green square) and moving towards the goal location (yellow square in frame 3).
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Chapter 5

Experimentation through Simulation

As a large swarm of robots move about the workspace, the control laws presented earlier cause the robots to
maintain line of sight and range to other robots. When both of those conditions are met a communication
link can be established. When multiple links are created, the swarm as a whole constitutes a mobile wireless
communication network. The number of robots needed to illuminate trends in the properties of these
networks and the number of experimental trials required to ensure the results were statistically significant
precluded hardware based experimentation. In this chapter large scale simulations (10+ robots) are used to
understand the emergent swarm wide behavior under the influence of the control laws presented earlier.

Since robustness is frequently cited as a major motivation to employ swarm robotics, the robustness of
the resulting network was then analyzed using various connectivity metrics from mathematical graph theory.
The connectivity metrics of the swarm can be used to quantify the redundancy of the communication network
with respect to the failure of individual robots. Such an analysis was one of the promised deliverables of the
project. In this chapter we also explore the tradeoff between redundancy and task completion as measured
by the time required for each robot to reach its goal.

1 Modeling robot swarms as graphs

A mathematical graph G consist of vertexes V (also called nodes) and edges E . For convenience in discussion,
the graphs’s n vertices are labeled V = {1, 2, . . . , n} although the labels themselves are arbitrary. An edge
is essentially an unordered pair of vertices e = (i, j) with i, j ∈ V and e ∈ E .

A graph with n nodes can be represented numerically by an n by n matrix called a connectivity matrix,
C. If nodes i and j are connected by an edge then Ci,j = 1. Ci,i = 0 by convention. C is symmetric along
the main diagonal. Using this matrix, several numerical measures of the graph can be determined.

The swarm can be modeled as a graph. Each robot is a vertex. An edge exists between two vertices
(robots), if and only if both range and line of sight are established. An edge represents a communication link
(Figure 5.1 and Figure 5.2 a). Note that the graph theoretic representation does not encode any specifics
about the positions or velocities of the robots or obstacles. It is simply an abstract representation which
models the connection topology of the swarm.

2 Graph theoretic measures of connectivity

A graph is said to be connected if and only if there exists a path from every node to every other node. If a
swarm is connected a single communication network exists. If the graph is disconnected, several connected
sub-networks may exist.
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Figure 5.1: A communication network created by 5 robots in a simulation.

Figure 5.2: a) A graph, G which has 5 nodes and 7 edges. b) K(G) > 1 because the removal of any node does
not disconnect the graph. c) K(G) = 2 because with the removal of 2 nodes the graph becomes disconnected.

The measure of connectivity which this project is most interested in is the K–connectivity, K(G). The K
value is the minimum number of nodes which when removed, disconnect the graph. If a graph is connected
and removing one node will disconnect the graph then the graph’s K value is 1 (also called a 1–connected
graph). If it takes two nodes to be removed before the graph becomes disconnected then the K value is 2,
etc. The K–connectivity is a worst case scenario measure, it represents the minimum number of nodes which
must be removed before the graph becomes disconnected (Figure 5.2).

This property is of special interest to the project because as Criteria 4:Fault Tolerance states, the con-
troller should be able to survive a massive communication disturbance such as the loss of a node (robot).
The K value explicitly defines how many nodes (robots) can be lost before the swarm no long is connected.
In order to for a network to truly be fault tolerant, it must be at least 2–connected, implying the swarm’s
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connectivity hinges on no single robot.
However, four drawbacks make K insufficient as a stand-alone measure of network robustness or redun-

dancy.

1. Most importantly, no motion controller that satisfies the project’s design Criteria 3:Distributed Oper-
ation can directly influence K, because computing K requires knowledge of every robot’s position. K
is a global measure.

2. K is an overly conservative measure of connectivity. It represents a worst case scenario – the minimum
number of vertex failures which disconnect the swarm. Two swarms can have identical K values,
however, one of the swarms may have many more edges making it much more robust to single robot
failure.

3. The connectivity of the swarm varies as a function of time due to the swarm’s motion. Because K only
takes on integer values it may jump from K = 2 to K = 3, for example. This is another manifestation
of K’s conservancy. Without some intermediate measure of connectivity it is difficult to determine a
trend line.

4. Finally, K is difficult to compute because it requires a series of depth–first graph searches.

For these reasons five additional metrics were used to determine the overall connectedness of the swarm.
They are:

• minimum degree,

• algebraic connectivity,

• average degree,

• number of groups of robots when the graph is disconnected,

• percentage of time in which every robot has at least two connections (simple redundancy).

Some of these measures require further explanation. The minimum degree, average degree, and algebraic
connectivity are explained below.

The Degree of a vertex δ(i) is the number of edges incident on that vertex. In the case of robot swarms,
this is the number of communication links a given robot i has established at any given time. This can be
computed from the matrix C by

δi(G) =
n∑

j=1

Ci,j .

The desired degree of a given vertex is important because the minimum acceptable value for the number
of communication links for a certain robot can be easily specified as an input to the parallel composition
controller.

The Minimum Degree

δmin(G) = min
i∈[1,...,n]

n∑
j=1

Ci,j

is very important because by Whitney’s inequality ([17, page 43]) and theorem 6.8 of [4]:

max(0, 2δmin(G) + 2− n) ≤ K(G) ≤ δmin(G)

(max(0, 2δmin(G) + 2 − n) can be abbreviated as K). Thus, the minimum degree provides upper and lower
bounds on the K–connectivity. Note however that these bounds are highly conservative. It is also of interest
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because by assigning each robot a desired minimum acceptable degree, one can directly control the swarm’s
K–connectivity in a distributed fashion.

Another property that can be extracted from C is the Algebraic Connectivity [12], e2(G). It is equal to
the second smallest eigenvalue of the Laplacian matrix of C. There are several features of this property
which make it attractive to use. First, e2(G) = 0 if and only if the graph is disconnected. According to [15]

e2(G) ≤ K(G).

Therefore, this sets a lower bound on the value of K. K is a worst case scenario measure and only moves in
integer steps. More edges can be added to a graph, but the K value will not necessarily increase. However,
the value of e2 can be any real number and follows the number of edges. Thus, e2 provides a less conservative
measure of the overall interconnectedness of a graph. It is also very convenient to compute. It can be shown
that the algebraic connectivity is related to the Average Degree

δavg(G) =
1
n

n∑
i=1

n∑
i=1

Ci,j .

Thus in summary, while the K value is the primary interest in this project, it cannot be set directly
and is an overly conservative comparative measure of robustness. Other measures of connectivity are more
telling. The two most important are the minimum degree and the algebraic connectivity. The minimum
degree can be set at a desired value by changing the desired number of communication links per robot in the
parallel composition algorithm subroutine. The minimum degree indirectly effects K by setting upper and
lower bounds on its value. The algebraic connectivity is continuous and proportional to the number of edges
in the graph. It is highly convenient to measure and provides a tighter lower bound on K. These measures
are related

max(0, 2δmin(G) + 2− n) ≤ e2(G) ≤ K(G) ≤ δmin(G).

Furthermore since K is always an integer and e2 is a real number, e2 can be rounded up to give an even
tighter bound.

As an example, the graph in Figure 5.2 a has values of K = 1, e2 = 1.5858, K = 2 and δmin = 2.

3 Experimental procedure

A series of simulations were run to determine how changing the number of desired links per robot affects
the K value. In the experiments, the desired number of links per robot (M) was the independent variable
and the six metrics listed above were the dependant variables. Other variables were controlled to provide a
meaningful result. All simulations used the same set of 30 different workspaces. Each workspace was a 500
by 500 centimeter box with two obstacles and 15 robots. The robots were placed randomly within a 200
by 200 cm box in the lower left hand corner. Each robot was assigned a unique goal position. These goal
positions were randomly placed in a 100 by 100 centimeter box in the upper right hand corner. One obstacle
was a quadrilateral while the other was a triangle. The obstacles were placed by hand to ensure variety
in the workspace composition. In some workspaces the obstacles were placed in the direct line of the goal,
while in other a narrow passage existed in direct line to the goal and in some, the obstacles were placed so
they wouldn’t interfere too much with the robots moving towards the goal. Figure 5.3 shows some sample
workspaces while Figure 5.4 is simulation in progress.

A desired minimum degree was set at the start of a experiment. Thirty simulations, one for each
workspace, would be run for 1000 iterations each. At each iteration the metrics were checked to determine
robustness of the swarm communication network. At the end of an experiment, six 30 by 1000 matrices of
data points were created. The data was then averaged over the 30 runs. Experiments were conducted on
both controllers with zero through eight desired links per robot. See Appendix N for MATLAB computer
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Figure 5.3: Four different workspaces. The x’s mark the starting positions of the robots while the * are the
goal positions.
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Figure 5.4: A simulation in progress with the robots forming a communication network while avoiding
obstacles.

Figure 5.5: The metrics plotted over time for each experiment with the communication variant.
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Figure 5.6: The metrics plotted over time for each experiment with the original controller.

code used to determine the metrics. Each of the averaged values for each experiment is plotted over time in
Figures 5.5 and 5.6.

Eight desired communication links per robot was set as the maximum value tested. If the actual number
of links equals the desired number of eight, then K ≥ 2 for a swarm of 15 robots based on the value of K.
This project is most interested in creating a minimum K value of 2 because it means that no single robot
failure will disconnect the swarm. At M = 8 the actual number of communication links was much higher
than 8 because the robots were in such close proximity, therefore, increasing the number of communication
links beyond 8 would not produce anything more meaningful.

The experiment with M = 0 simulates a swarm in which each robot moves independently, with no
regard for swarm wide networking. This was used as the baseline to determine how much of a difference the
controllers made in establishing a communication network. As the robots move around, and especially given
the workspace set up, some communication links will be established by happenstance. The baseline results
provide a measure of how robust a natural communication network will be when each robot is independently
moving towards the same general area. The workspaces could have been carefully constructed so that no
communication links would form by happenstance. However, this is not necessary, all that is necessary is
that a baseline is established and then to determine the amount and degree to which the controller deviates
from that baseline.
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4 Experimental results

It was predicted that the more connections desired per robot, the greater the robustness of the swarm but also
the longer it would take the swarm to reach its goal. In addition, it was believed that the robustness of the
swarm would hit a saturation level and increasing the desired number of links would not effect the robustness
after that saturation level. Additionally, it was predicted that the communication variant would establish
a stronger network at the price of increased time to goal. While these were the qualitative predictions, no
educated quantitative prediction could be made.

When examining the data, some of the metrics do not provide much useful information. The measure
of simple redundancy increased until it reached saturation at M = 2. The number of groups also did not
provide much useful information, for all of the experiments where M 6= 0 the number of groups quickly
converged to 1.

For the meaningful metrics, the data was averaged over the first 400 iterations. The first 400 iterations
were chosen because by this point, in all experiments, the robots had settled to steady state values. This
project is more interested in the transient response of the controller, i.e. the response of the controller as
the robots move around. The averages for this data are shown in Figure 5.7. In addition, the data for the
average time to goal is also plotted. A better interpretation of the data is based on the percentage increase

Figure 5.7: The values for the connectivity and time to goal metrics for every experiment. Triangles mark up-
per and lower bounds for K–connectivity of the Comm. variant, while * mark the the upper and lower bounds
of the original controller’s K-connectivity. Note the different y axes for time to goal and K–connectivity.
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in the various values. The baseline results are simply a result of the workspace design; therefore, it is
more meaningful to examine the percentage increase rather than the absolute values of the data. Therefore,
Figure 5.8 is a comparison of the percentage increase in robustness and time to goal for all the experiments.

Figure 5.8: The percentage difference in the metrics between the baseline and the various experiments.

Only demanding each robot to have one communication link did little to affect the robustness of the
swarm or the time to goal. It appears that the controllers reach saturation for values of M > n/2 but
without experimental data, this cannot be proven conclusively. Also as predicted, the communication variant
consistently established a more robust network than the original or goal controller. The communication
variant had a larger impact when the number desired number of communication links was larger. However,
this increased robustness cost the swarm an approximate 20% increase in the time to reach the goal.

It is also interesting to note that while the conservative lower bound is at zero for most of the experiments,
the e2 metric is consistently higher than the conservative lower bound. This means that the controller is
consistently pushing the connectivity up towards a higher value. In some cases, δ > M . This happens because
as the robots pull themselves into a communication network, other communication links are established by
the fact that the robots are now in closer proximity.

When taken as a whole, the controllers developed in this project, can increase the robustness of a
communication network at least 200- 300% while only costing a 25-45% increase in the time to accomplish
the goal. Depending on if the mission is time critical or if it needs good communication, the controller could
be tuned to meet the demands.
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4.1 Sources of error

The data is averaged in each of the experiments. Thus, few guarantees can be made about the performance
of an individual swarm, only average statements can be made. Given another workspace, the swarm could
perform below its average for its given controller. This controller is dependent on the initial conditions of
the workspace and how that affects communication links being created by happenstance. By analyzing the
percentage increase over the baseline, the effect of the initial conditions should be eliminated.

K reflects the relationship between M and a lower bound. However, this relation is very conservative
and does not provide an accurate reflection of the K values in a simulation. A more accurate formula which
relates Q to a lower bound of K is desired. The network created is a special type of graph called a proximity
graph so perhaps by using the properties of this type of graph, a tighter theoretical constraint on K could
be established. Time limits prohibit this investigation.
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Chapter 6

Conclusion and Future Work

1 Conclusion

This project designed a solution to the stated task of creating an overall motion control algorithm which can
accomplish the dual, and sometimes conflicting requirements of executing a primary mission while at the same
time establishing and maintaining a robust communication network. This project created several potential
fields to accomplish this, each of which is an original theoretical contribution. Additionally, a novel high
level control algorithm was created and implemented. The parallel composition scheme took a theoretical
(nonconstructive) proof and exploited the planar structure of the problem to develop a computationally
efficient: 1. feasibility test and 2. method of computing velocity vectors.

Additionally, two different algorithms were developed which prioritize and determine a feasible set of
vectors. Both allow the most urgent and important vectors to be reflected in the final velocity. One is
optimized for communication and the other for goal completion.

Several hundred (510) simulations were run to test and analyze the performance of the controller at
accomplishing the goal and maintaining a robust communication network. The results of the simulations
prove that the controller is able to accomplish its dual objectives simultaneously. Quantitative analysis
shows that using the controller can increase the connectivity of the swarm, as compared to the baseline
experiments, by 200-300% while only incurring a 25-45% increase in the time it takes to reach the goal.

The controller was also implemented on a physical robot system to test how the controller could be
implemented on real robots. Even with all other component necessary for the robot system, the algorithm
was fast enough that it could update a robot’s speed 7 times a second. This proved that the algorithm was
efficient enough to be used as a real-time controller for robots.

The functions, algorithms, and controllers created in this project accomplish the task goals in way that
was designed for swarms of multiple, unsophisticated, independent robots. The functions, algorithms and
controllers accomplish criterions of Goal Completion and Robust Communications in a manner that satisfied
the criterions of Distributed Operation and Fault Tolerance.

In summery, the accomplishments of this project are as follows:

Theoretical accomplishments

• Designed a distributed control law for maintaining inter-robot separation between two robots. This
control law allows for the minimum separation distance and maximum communication distance to be
set independently.

• Designed a distributed control law for maintaining line of sight between two robots. This control law
maintains line of sight and if two robots lose line of sight, it pushes one of the robots out of the occlusion
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zone and back into line of sight communication.

• An algorithm was designed which enforces the redundancy constraint and maximizes the number of
task objectives which can be meet while minimizing the energy used.

• An original, unique and novel high level control scheme was developed which facilitates meeting two
or more objectives simultaneously and reflects the importance of meeting the objectives.

Implementation and design accomplishments

• Designed a computer vision system capable of identifying and orienting the robots in < .1 seconds.

• Engineered a framework for controlling the Koala Robots, including a unique control methodology
using MATLAB, wireless Ethernet, and the C programming language.

• Demonstrated a physical system of robots to prove that the control algorithm could be implemented
and used on a real time robotics system.

Experimental analysis accomplishments

• Performed hundreds of simulations in various workspaces using large numbers of robots to test the
performance of the controller.

• Pursued in depth quantitativeness analysis using graph theory techniques and formulas to determine
the robustness of the swarm communication network.

• Demonstrated through simulations that the control algorithms can cause a 200-300% increase in the
robustness of the swarm while only incurring a 25-45% increase in the time to complete the goal.

2 Ideas for future research

There are still many avenues to extend the results of this research. The experimental K value is much higher
than the theoretical lower bound of K. Determining a less conservative relationship between K and δ is a
top priority. This would lead to a method of selecting δ, to achieve a certain degree of redundancy. The
robot’s communication network is a special type of graph called a proximity graph. Perhaps by examining
the properties of these graphs a tighter relationship could be found.

One aspect that this project explored, but due to the time limitations, only tentative conclusions could
be drawn, is the idea of only having restricted position information. With restricted position information,
a robot only knows the position information of the robots with which it has a communication path. It is
important to note that the motion control algorithm still functions without omniscience position knowledge.
This scenario is equivalent to the ‘eye in the sky’ being removed and each robot has to communicate its
position to every other robot with which a communication path exists. Not enough simulations were run
to provide a definitive result. However, in initial simulations each group of robots forms the most robust
communication network given the number of robots and the Q value. If by happenstance two groups should
meet, then the network will rearrange itself based on the new position information which can be obtained. It
is predicted that, at the beginning of a simulation, the metrics appear to be similar to the baseline controller.
At the start, there are many groups and so there is little position information which constrain the robots.
But as the simulation progresses, the groups become larger and thus the metrics will begin to mirror the
simulations where the robots had omniscient position knowledge.

A promising future research project would be to combine this project with some of the work outlined
by Poduri and Sukhatme [30]. This work examines using proximity graphs for maximizing the coverage of



60

mobile sensing networks while keeping some degree of communication robustness. However, the proximity
graphs examined are a highly ordered lattice of points which might be unsuitable for a real environment
with obstacles. If the lattice points were set as the goal positions of the robots in an unknown workspace,
then the controller designed in this project could be used to guide the robots towards the goal positions
while maintaining a communication/sensor network. If there were any obstacles in the way of the robots
reaching the lattice points, this project’s controller would approximate the ideal lattice positions in such
a way that the communication/sensing network would not be effected greatly. Thus, using the results on
proximity graphs for coverage contained in [30], and this project’s motion control algorithm, a controller for
maximizing sensor converge while maintaining a robust communication network can be created.

To better approximate the real world, noise could be added into the communications. This would mean
that a communication link, even though the robots are within range and line of sight, could not be established
for a brief period of time. The problem of dropped communication links on the robustness of a controller is
closely related to its K value. E(G) is like the K value, except it is the minimum number of edges that need
to be dropped before the graph becomes disconnected. The relationship between K and E is as follows [17,
page 43]:

K(G) ≤ E(G) ≤ δ(G).

A final area of future exploration is asynchronous communications, where the robots do not have in-
stantaneous updated information of the positions of the swarm members. Instead, it would take a certain
amount of time for a robot to receive updated information from another robot on the opposite side of the
swarm. This problem is closely related to errors in position information which come from localization errors.
Incorporating these delays and errors would help increase the realism of the simulations.
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Appendices

A Programs for obstacle avoidance
function [dx, dy]= Bishopobstacle(xR,yR, n, stats);

%obstacpreprocessor must have been run to define stats and idx

%This fucntion returns the velocity to avoid an obstacle based upon a

% robot’s

%position.

%This code is partly based off of code written by PRof. Bishop and Yong

% Tan in their

%Trident project.

%20JAN

G = 50; %coeffient factor of potential field.

dc = 15; %cutoff distance

%maxh = 5; %max velocity that can be returned.

dx = 0;

dy = 0;

%global stats

%global SOI

%distocentroid =

% distance(xR,yR,stats(n).Centroid(1),stats(n).Centroid(2));

%if(distocentroid <=SOI(n))%if the distance to the centroid is less than

% the Sphere of Influence

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%find the approprate two vertices

roboangle = atan2(yR-stats(n).Centroid(2),xR-stats(n).Centroid(1));

if (roboangle > max(stats(n).angles) | roboangle < min(stats(n).angles))

i1 = 1;

i2 = length(stats(n).angles);

else

for q = 2:length(stats(n).angles)

if roboangle < stats(n).angles(q)

i1 = q;

i2 =q-1;

break

end

end

end

x1 = stats(n).vx(i1);

x2 = stats(n).vx(i2);
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y1 = stats(n).vy(i1);

y2 = stats(n).vy(i2);

%plot(x1, y1, ’*’)

%plot(x2, y2, ’ g *’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%finding distances

if (stats(n).vx(i1) ~= stats(n).vx(i2))

slopeL = (y2-y1)/(x2 -x1); %L is short for line of obstacle.

else

slopeL = Inf

end

interceptL = -slopeL *x1 +y1;

A = slopeL;

B = -1;

C = interceptL;

d = abs((A*xR + B*yR +C)/sqrt(A*A +B*B)); % based on point-line distnace

% formula

angledge =atan2(y2 -y1,x2-x1);

angleRepulse = angledge +pi/2; %this works because of the way the angledge

% is defined using i1 and i2

xL = xR +cos(angleRepulse +pi)*d; %these are the points on the edge

yL = yR +sin(angleRepulse +pi)*d;

d1 = sqrt((xL -x1)^2+ (yL -y1)^2);

d2 = sqrt((xL -x2)^2+ (yL -y2)^2);

L = sqrt((x1 -x2)^2+ (y1 -y2)^2);

%plot(xL, yL, ’m *’)

if (max([d1,d2]) > L) %if the point is off obstacele

dv1 = sqrt((xR-x1)^2+ (yR -y1)^2);

dv2 = sqrt((xR-x2)^2+ (yR -y2)^2);

[d indx] = min([dv1, dv2]); %redefine d

if indx == 1;

angleRepulse = atan2(yR-y1,xR-x1); %and redefine angleRepulse

else

angleRepulse = atan2(yR-y2,xR-x2);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%finding velocity

if d>dc

zprime =0;

else

zprime = G*(1/d -1/dc)*1/d^2; %Latombe pg 300 zprime is the velocity

% field, since this one is differntable,can take a short cut

end

% if zprime> maxh

% zprime =maxh; %capping the output

% end



66

xunit = cos(angleRepulse); %must be written this way to ensure vector is

% pointing the correct way.

yunit = sin(angleRepulse);

dx = zprime*xunit;

dy = zprime*yunit;

%end
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B Programs for inter-robot separation distance
function [dz] = Impsemi(dist) %code written for speed of runtime not ease

% of readablity

maxcom = 9; %maximum comm range really 80cm

%if min sep needs to

%change, then c,xsig and h need to be changed accordingly.

if (dist > maxcom) %if x is outside of max comm range, use parabola

%parabola

K=.2; %parabolic coeffient

dz = 2*K*(dist-maxcom);

return

end

dz =0;
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C Programs for line of sight
function [dx,dy] = LOSvelf(x,y, gammab, gammat, outside)

%

% figure(2);clf; hold on;

% quiver(0, 0, 50*cos(gammat), 50*sin(gammat), ’r’)

% quiver(0, 0, 50*cos(gammab), 50*sin(gammab), ’b’)

% plot(x,y, ’m *’)

cutoff =.5; %how low the speed should be at the occulsion lines

scale = 1; %just a factor to scale the speed by, speed * 1/scale

% theta = (gammat+gammab)/2;

%

% roboangle = atan2(y,x);

intercept = 0; %this is only because of the way I’ve set it up, in real

% implimentation it needs to be calced from other bots position

%However, if the other robot is set at 0,0 and x,y are

% adjusted

%accodingly, this will always be zero

A = tan(gammab);

B = -1;

C = intercept;

db = abs(A*x + B*y +C)/sqrt(A*A +B*B)*1/scale; % based on point-line

% distnace formula

A = tan(gammat);

%B = -1;

%C = intercept;

dt = abs(A*x + B*y +C)/sqrt(A*A +B*B)*1/scale; % based on point-line

% distnace formula

d =min([db dt]); %find which occlusion line is closer

if db <= dt;

gama =gammab;

slopea = gama -pi/2;

else

gama =gammat;

slopea = gama +pi/2;

end

%outside

if (outside);

d = -d;

end

d = d +cutoff;

if d< 0

d =0;

end

% d;

% slopea;

% gama;
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dx = cos(slopea)*(d);

dy = sin(slopea)*(d); %this means speed is proportional to distance from

% occlusion line

% quiver(0, 0, 50*cos(slopea), 50*sin(slopea), ’k’)

%quiver(x,y,dx,dy);

%axis equal

function [outside, sanctum, gammab, gammat] = LOSconnect(x,y,A);

% this function takes the verticies of the convex hull and coverts them

% into vectors, it then finds the two occulsion vectors in the same way

% that the smart sum does, by looking for a jump greater than 180. because

% these are convex obstacles, the occlusion zone will always be less than

% 180 degrees.

%

%---------------------------------------

%everything for this code is in 0 - 2*pi radians

% determine number of vertices

S = size(A);

N = S(2);

theta(:,1) = atan2(A(2,:), A(1,:))’;

i = find(theta<0);

theta(i) = 2*pi+theta(i);

% use column vector ...it should be one already?

%theta = theta’

% now sort by increaseing theta, ind lets you reference back to actual

% vectors in A later

[theta ind] = sort(theta);

%what’s going on here? %everythings okay, sort works on column vectors

%theta = theta’;

% looking at change in theta as we go through list

for q =1:(N-1)

deltaTheta(q) = theta(q+1) - theta(q);

end

deltaTheta(N) = (2*pi- theta(N)) + theta(1);

maxDtheta = max(deltaTheta);

outside =true; %assumed outside until proven otherwise

if (maxDtheta == deltaTheta(N)) %if N is the largest angle, then this

% means that the first is the smallest since angles are in increasing

% order

gammat = theta(N); %no wrap going on here,

gammab = theta(1);

v1x = A(1,ind(N));

v1y = A(2,ind(N)); %find the constraining vertice points

v2x = A(1,ind(1));

v2y = A(2,ind(1));
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roboangle = atan2(y,x);

if roboangle <0;

roboangle = roboangle+2*pi;

end

if ((gammab) < roboangle && roboangle <(gammat)) %this is an and

outside =false; %then it is inside occlusion lines

end

else

j = find(deltaTheta == maxDtheta);

%’wrap’

gammat = theta(j); %This is the angle which is the smallest one

gammab = theta(j+1); %this is the largest angle, however, it will be

% on the ’bottom’ because of wrap

v1x = A(1,ind(j)); %hence why it is called the gammab

v1y = A(2,ind(j)); %following the above convention of gammat is v1

v2x = A(1,ind(j+1));

v2y = A(2,ind(j+1));

roboangle = atan2(y,x);

if roboangle <0;

roboangle = roboangle+2*pi;

end

if (roboangle <gammat | gammab < roboangle) %for all other cases, it

% is an and

outside =false;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%now that we have an upper and lower radius, and upper and lower occlusion

% figure(2)

% %clf

% hold on;

% plot(A(1,:)’,A(2,:)’, ’k’);

% plot(x,y,’^’);

%%%%%%%%%%%%%Note that we have converted to radians from here on out

sanctum =true;

if (~outside) %if it is inside the occulsion lines

%is it in the inner sanctium?

slope = (v2y-v1y)/(v2x -v1x);

xinter = (v1y - slope*v1x)/(tan(roboangle)-slope);

yinter = tan(roboangle)*xinter;

%quiver(0,0,xinter,yinter)

%quiver(0,0,x,y)

interdist =sqrt(xinter^2 +yinter^2);

robodist = sqrt(x^2+y^2);

if( robodist > interdist) %if it is outside of inner sanctum

sanctum =false;

% it is not in the inner sanctum

end

end
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%in LOS communication = sanctum; %it is only out of LOS comms if it is

% inside the occulsion lines & not in the inner sanctum!
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D Programs for redundancy
function[dzdx, dzdy] = circumcenter(x,y,xR,yR);

%find the nearest two bots

for i =[1:length(xR)]

distances(i) = distance(x,y,xR(i),yR(i));

end

[d i] = min(distances);

dist1 = d;

i1 = i; %finding shortest distance indicex

distances(i) =1000000;

[d i] = min(distances); %finding 2nd shortest distance

dist2 = d;

i2 =i;

xc1 = (x+xR(i1))/2;

yc1 = (y+yR(i1))/2;

xc2 = (x+xR(i2))/2; %finding the bisector point of the lines

yc2 = (y+yR(i2))/2;

slope1 = -(xR(i1)-x)/(yR(i1)-y); %constructing a perpendicular line

slope2 = -(xR(i2)-x)/(yR(i2)-y);

b1 = slope1*-xc1 + yc1;

b2 = slope2*-xc2 + yc2;

xcircum = (b1-b2)/(slope2-slope1);

ycircum = slope1*xcircum + b1;

%figure(1)

axis equal

hold on;

plot(xcircum, ycircum, ’. g’)

d = distance(x,y,xcircum,ycircum);

% distance(xR(i1),yR(i1), xcircum, ycircum) %all these should be the same

% as d

% distance(xR(i2),yR(i2), xcircum, ycircum)

K = 1; %Spring constant

%z = .5* K * d^2; %to use regular simulation program, based on

% gradients, comment everything after this

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xunit = (xcircum - x)/d; %this is a quicker way to calculate the

% gradient, b/c I know where it is ending up.

yunit =(ycircum -y)/d;

%zprime now becomes a velocity field, take dirivative of z

zprime = K*d; %zprime is the velocity

dzdx = zprime*xunit; %velocity times unit vector length

dzdy = zprime*yunit;
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function [dzdx,dzdy,xfc,yfc] = fermatcenvel(x,y,xR,yR);

%this fucntion calculates the fermat center and also cacluates the

% velocity

figure(2); hold on;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%find the nearest two bots

for i =[1:length(xR)]

distances(i) = distance(x,y,xR(i),yR(i));

end

[d i] = min(distances);

dist1 = d;

i1 = i; %finding shortest distance indicex

distances(i) =1000000;

[d i] = min(distances); %finding 2nd shortest distance

dist2 = d;

i2 =i;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%finding angles of triangle made by the 3 bots

%vetrexies are x = (x,y)

%1 =(xR(i1),yR(i1) and

%2 =(xR(i2),yR(i2)

ax =...

acos(dot([xR(i1)-x,yR(i1)-y],[xR(i2)-x,yR(i2)-y])/(norm([xR(i1)-x,yR(i1)-y...

])*norm([xR(i2)-x,yR(i2)-y])));

a1 =...

acos(dot([x-xR(i1),y-yR(i1)],[xR(i2)-xR(i1),yR(i2)-yR(i1)])/(norm([x-xR(i1...

),y-yR(i1)])*norm([xR(i2)-xR(i1),yR(i2)-yR(i1)])));

a2 =...

acos(dot([xR(i1)-xR(i2),yR(i1)-yR(i2)],[x-xR(i2),y-yR(i2)])/(norm([x-xR(i2...

),y-yR(i2)])*norm([xR(i1)-xR(i2),yR(i1)-yR(i2)])));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%if one of the angles is larger than 120, fermat point is at that angle’s

%vertex

[m index] = max([ax,a1,a2]);

if (m >= (120*(pi/180))) %if it is very obtuse then set xfc,yfc at the

% vertx point

if index ==1

xfc = x;

yfc = y;

end

if index ==2

xfc = xR(i1);

yfc = yR(i1);
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end

if index ==3

xfc = xR(i2);

yfc = yR(i2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%otherwise calculate the fermat center

else

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%constructing points on equalateral triangles and constructing lines.

angle1 =atan2(yR(i1)-y,xR(i1)-x);

angle2 =atan2(yR(i2)-y,xR(i2)-x);

if abs(angle2-angle1) > pi

if(angle1<angle2)

pangle = angle1+60*pi/180; %if the difference between the

% angles is greater than 180(or 240 more pecisely)

qangle = angle2-60*pi/180; %than the smaller of the

% angles gets +60 added to it

else

pangle = angle1-60*pi/180;

qangle = angle2+60*pi/180;

end

else %else, if the difference

% between the angles is less than 180(120)

if (angle1>angle2)

pangle = angle1+60*pi/180; %the larger of the angles

% gets 60 added to it

qangle = angle2-60*pi/180;

else

pangle = angle1-60*pi/180;

qangle = angle2+60*pi/180;

end

end

xp = dist1*cos(pangle)+x

yp = dist1*sin(pangle)+y %finding the points on equalateral

% triangles

%plot(xp,yp, ’^’)

xq = dist2*cos(qangle)+x

yq = dist2*sin(qangle)+y

%plot(xq, yq, ’^’)

slope1 = (yp-yR(i2))/(xp-xR(i2)); %constructing lines

slope2 = (yq-yR(i1))/(xq-xR(i1));

b1 = slope1*-xp + yp;

b2 = slope2*-xq + yq;

g=[0:.5:11];

plot(g,slope1*g+b1, ’y’)

plot(g,slope2*g+b2, ’m’)
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xfc = (b1-b2)/(slope2-slope1); %solving lines for intercection pt.

yfc = slope1*xfc + b1;

end

plot(xfc, yfc, ’+ r’) %plot fermat center

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate the height => potential field

%d = distance(x,y,xfc,yfc); %calculating potential function

%K = 1; %Spring constant

%z = .5*K*d^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate gradient => calculate velocity

d = distance(x,y,xfc,yfc); %calculating potential function

if d ==0 %in the case that on angle is >120 d

% =0 so no movement occures, return to calling function

zprime=0;

dzdx =0;

dzdy =0;

return

end

K = 1; %Spring constant

xunit = (xfc - x)/d; %this is a quicker way to calculate the gradient,

% b/c I know where it is ending up.

yunit =(yfc -y)/d;

zprime = K*d; %zprime is the velocity

if zprime >10

zprime =10; %velocity cap

end

dzdx = zprime*xunit; %velocity times unit vector

dzdy = zprime*yunit;
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E Programs for parallel composition controller
function [feasible] = feasiblity(A)

% this function takes a matrix A

% which contains a set of N 2-D vectors concatenated to form a

% 2XN matrix. Each vector represents the desired velocity for one

% of the potential functiosn that are currently active

% The function attempts to compute a set of two basis vectors, such

% that any velocity vector which lies inside their convex hull would

% simulatneously decrease all the potential functions.

%Here are two test examples

%feasible

%A= [1 1 -.1 1;1 2 -4 -1]

% infeasible

%A= [-2 1 1 -.1 1;0 1 2 -4 -1]

%---------------------------------------

% determine number of potential fuctions

S = size(A);

N = S(2);

if N ==1 || ~N; %it is feasible if it is exactly one or exactly zero

feasible =true;

return

end

for(i=1:N)

% compute the angle of each vector

theta(i,1) = atan2(A(2,i), A(1,i))’*180/pi;

% theta in [0,360] format

if (theta(i)<0)

theta(i) = 360+theta(i);

end

end

% use column vector ...it should be one already?

theta = theta’;

% now sort by increaseing theta, ind lets you reference back to actual

% vectors in A later

[theta ind] = sort(theta);

%what’s going on here?

theta = theta’;

theta’;

% looking at change in theta as we go through list

deltaTheta = [theta(1)-theta(N); theta(2:N)- theta(1:N-1)];

%again make sure that deltaTheta in [0,360]

for(i=1:N)

if (deltaTheta(i)<0)

deltaTheta(i) = 360+deltaTheta(i);

end

end

[maxDtheta, j] = max(deltaTheta);

if (maxDtheta<=180)

%’infeasible’

feasible = false;

else

%’feasible’
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feasible = true;

end

function A = paracontrollerupdate(P,C, commsindx, commnum) %P is a 2-N

% priority matrix

%which is in the format of rows: dx;dy

%C is a 4-N comm matrix which is in

%the format, rows: dxLOS;dyLOS;dxrange;dyrange

%Tom Dunbar

%Trident Project

%24MAR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

%Check if all priority 1 velocities are feasible

feasible = feasiblity(P);

A=P;

while(~feasible) %while it is not feasible

D=[];

veloA =[]; %blanks it out or else an infinite loop will occur!!!

S = size(A);

for i = 1:S(2)

veloA(i) = norm(A(:,i));

end

[velo i] = min(veloA);

D(1,:) = [A(1,1:i-1),A(1,i+1:end)]; %delete the smallest velocity

D(2,:) = [A(2,1:i-1),A(2,i+1:end)];

feasible = feasiblity(D); %recheck feasibility

A =D; %after the smallest has been deleted update A;

%note that velocities are sucessively deleted, and thus feasibility

%will eventually be acheived because soon there will only be two

%velocities left.

end

%A;

%A is now a 2-something matrix which contains the priority velocities

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Now add a pair(s) of comm constraints

S =size(C);

N= S(2);

for i = 1:N

veloLOS(i) = norm([C(1,i),C(2,i)]);

velorange(i) = norm([C(3,i),C(4,i)]);

veloC(i) = norm([C(1,i)+C(3,i),C(2,i)+C(4,i)]);

end

for i = commsindx
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veloC(i) = Inf; %if already in comms, don’t evaluate in next section.

end

%if commnum <2 %if there are less than 2 bots in communication then get

% to work

%select the pair of comm velocities

for num = 1:(1-commnum) %do this once or twice depending on how many bots

% there are

[minC i] = min(veloC); %find the smallest pair of comm vectors

while(minC ~= Inf)

if veloLOS(i) ~=0

feasible = feasiblity([A,[C(1,i);C(2,i)]]); %is it feasible?

if (feasible)

A = [A,[C(1,i);C(2,i)]]; %if so add it to A

end

end

if velorange(i) ~=0

feasible = feasiblity([A,[C(3,i);C(4,i)]]); %is that range

% feasible?

if (feasible)

A = [A,[C(3,i);C(4,i)]]; %if so add it to A

end

end

%A

veloC(i) = Inf; %change this so a new LOS is chosen

[minC i] = min(veloC); %find the smallest comm pair

end

end %ends for loop

%end %end if statement about if commnum <2

%A

% S = size(A);

% if S(2)==1;

% feasibleVel =A;

% return

% end

%

% %Now that we have a set of feasible vectors its time to create the final

% %motion vector!!!!

% feasibleVel = smartSum(A);

function feasibleVel = smartsum(A)

% this function takes a matrix A

% which contains a set of N 2-D vectors concatenated to form a

% 2XN matrix. Each vector represents the desired velocity for one

% of the potential functiosn that are currently active

% The function attempts to compute a set of two basis vectors, such

% that any velocity vector which lies inside their convex hull would

% simulatneously decrease all the potential functions.

% The function returns basis1 and
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% basis2. A feasible velocity is any vector beta*(alpha*basis1 +

% (1-alpha)*basis2), where alpha in [0,1] and beta in [0,infty)

%Here are two test examples

%feasible

%A= [1 1 -.1 1;1 2 -4 -1]

% infeasible

%A= [-2 1 1 -.1 1;0 1 2 -4 -1]

%---------------------------------------

% alpha =.5;

% beta = 1;

% determine number of potential fuctions

S = size(A);

N = S(2);

%

% figure(2)

% clf

% hold on;

% grid on;

%axis([-1 1 -1 1]);

for(i=1:N)

%plots vectors from potentials...

%plot([0 A(1,i)],[0 A(2,i)] ,’o-k’)

% compute the angle of each vector

theta(i,1) = atan2(A(2,i), A(1,i))’*180/pi;

% theta in [0,360] format

if (theta(i)<0)

theta(i) = 360+theta(i);

end

end

% use column vector ...it should be one already?

theta = theta’;

% now sort by increaseing theta, ind lets you reference back to actual

% vectors in A later

[theta ind] = sort(theta);

%what’s going on here?

theta = theta’;

% looking at change in theta as we go through list

deltaTheta = [theta(1)-theta(N); theta(2:N)- theta(1:N-1)];

%again make sure that deltaTheta in [0,360]

for(i=1:N)

if (deltaTheta(i)<0)

deltaTheta(i) = 360+deltaTheta(i);

end

end

[maxDtheta, j] = max(deltaTheta);

if j == 1

constr1 = N;

constr2 = 1;

else

constr1 = j;

constr2 = j-1;
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end

% remember A was not sorted!

v1 = A(:,ind(constr1));

v2 = A(:,ind(constr2));

% now must find which side of nullspaces is the good part and compute

basis1 = [-1*v1(2);v1(1)];

basis2 = [-1*v2(2); v2(1)];

%dot(v1, basis2);

%dot(v2, basis1);

% if angle greater than 90 shodul flip

if (dot(v1, basis2) <0)

basis2 = -1*basis2;

end

if (dot(v2, basis1) <0)

basis1 = -1*basis1;

end

% basis1;

% basis2;

%find the angular difference between the basis1 and 2

angle1 = atan2(v1(2),v1(1));

angle2 = atan2(v2(2),v2(1));

if angle1 <0

angle1 = angle1+2*pi;

end

if angle2 <0

angle2 = angle2+2*pi;

end

deltangle = abs(angle1 -angle2); %I’m not playing any wrap games,

%the absolute value of the difference of two positive numbers should be

% the

%angular difference between them.

if deltangle < (pi/2) %which means that v1 and v2 are less than 90

% degrees apart

basis1 = v1; %if so, set the basis at the vectors themselves

basis2 = v2;

feasibleVel = basis1 + basis2;

% quiver(0,0,basis1(1),basis1(2),’r’)

% quiver(0,0,basis2(1),basis2(2))

%

% plot([0 feasibleVel(1,1)],[0 feasibleVel(2,1)],’mo-’)

return

end

mag1 = norm(basis1);

mag2 = norm(basis2);

% this plots some sample vectors for visualization purposes

%feasibleVel = beta.*(basis1*alpha + basis2*(1-alpha)); %old control law

%(which isn’t the original intent either)

feasibleVel = (mag2/mag1)*basis1 + (mag1/mag2)*basis2;

% quiver(0,0,(mag2/mag1)*basis1(1),(mag2/mag1)*basis1(2),’r’)

% quiver(0,0,(mag1/mag2)*basis2(1),(mag1/mag2)*basis2(2))

%

% plot([0 feasibleVel(1,1)],[0 feasibleVel(2,1)],’mo-’)
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F Technical specifications for FireFly2 camera

Point Grey Research is a product engineering and technology company founded in January 1997.  
The company designs and develops computer vision technologies for commercial applications worldwide.  

Point Grey Research technology has been successfully used in people tracking, object tracking, modeling 
and dimensioning, mobile robotics, mining and many other computer vision applications.

Firefly2 is a compact 
board level IEEE-1394 
Digital Video Camera. 
Firefly2 uses a 1/4’’ pro-
gressive scan CCD in 
order to stream VGA qual-
ity color images at 30 FPS 
without compression.  The 
camera is provided as 
a complete development 
kit with an IEEE-1394 
interface card, cable, and 
image acquisition 
software. 

compact, low cost IEEE-1394 digital camera
     6 Pin IEEE-1394 interface

     1/4'' progressive scan Sony CCD

     Compact size - 40x40mm

     640x480 uncompressed color images

     Low cost OEM board camera soulution

Continuing product development is vital to Point Grey Research.  Point Grey Research reserves the right to alter any published specifications without notice.

System requirements:
•   Intel Pentium II or better
•   Windows 2000 or XP

Package includes:
•   Firefly2 board level camera
•   4.5 meter, 6-pin, IEEE-1394 cable
•   4, 6 and 8mm focal length M12 micro lenses
•   IEEE-1394 OHCI PCI Interface card
•   PGRFlyCapture image acquisition and 
     camera control C/C++ SDK

Camera specifications:

305-1847 West Broadway, Vancouver, B.C. 
Canada,  V6J 1Y6   

T: 604-730-9937   F: 604-732-8231  

www.ptgrey.com

1/4’’ Sony CCD (ICX098AK)
Color
VGA 640x480 format
HAD image sensor with square pixels
Progressive scan
3.75, 7.5, 15 & 30 FPS
YUV 4:1:1, YUV 4:2:2, YUV 4:4:4, and RGB 24-bit
Version 1.04
>40dB
6-pin IEEE-1394, vertical
Through IEEE-1394, 625mW standby, 1.25 W active
Auto/Manual (-3dB to 33dB)
Auto/Manual (1/25s to 1/15000s)
Manual
Auto/Manual
4mm, 6mm or 8mm (included in the kit)
40 x 40mm    
12g with a micro lens     

Imaging Device                             
                                             
                                                     

Supported frame rates:                
Supported formats:                      
Digital camera specification:        
Signal to noise ratio:                    
Connector:                                    
Power:                                          
Brightness:                                   
Exposure:                                     
Saturation:                                    
White Balance:                             
Lens focal length:
Footprint:
Weight:                                         

™

POINT GREY RESEARCH

rey2

front view                                      back view

40
m

m

40mm
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G Programs for computer vision
%Obstacle Avoidence Pre Processing Function

%tic

%gets a snapshot

frame = getsnapshot(vid2);

%converts it to a black and white image

BW = frame(:,:,1) >190 & frame(:,:,3) <110;

%imshow(BW);

%lables each region and finds statistics about it

[L num] =bwlabel(BW);

stats =regionprops(L, ’Area’, ’Centroid’, ’ConvexHull’);

idx =find([stats.Area]>80); %filters the output so only large areas are

% shown

bw2 =ismember(L,idx); %extra stuff for plotting

%figure(2);

imshow(bw2);

hold on;

%plot( stuff for convex hull )

%toc

pruner = 7; %pruning radius

dc = 15; %cutoff distance

%t =[0:.1:2*pi];

for n = idx %for each obstacle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%find the sphere of Influence

for m =1:length(stats(n).ConvexHull)

distances(m)...

=distance(stats(n).Centroid(1),stats(n).Centroid(2),stats(n).ConvexHull(m,...

1),stats(n).ConvexHull(m,2));

end

SOI(n) =max(distances) +dc; % sphere of influence = max distance +

% cutoff distance

% %plot(SOI(n)*cos(t)+stats(n).Centroid(1),SOI(n)*sin(t)+stats(n).Centroid

% (2),’r’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%

clear vx; clear vy; clear Cx; clear Cy;clear angles;

vx =stats(n).ConvexHull(:,1);

vy =stats(n).ConvexHull(:,2);

Cx = stats(n).Centroid(1);

Cy = stats(n).Centroid(2);

count =0;

L = length(vx)-1;

%plot(vx,vy,’r *’)

for i=[1:1:L]

%%%%%%%%%%%%%%%%%%%%

%prune out some of the excess

if( abs(vx(i)-vx(i+1)) < pruner && abs(vy(i)-vy(i+1)) <pruner)

vx(i) = 0;

vy(i) =0;

end
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end

vx = nonzeros(vx);

vy = nonzeros(vy);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%

%find the angles from the centroid to the vetexes. for each obstacle

for g=[1:1:length(vx)]

angles(g) = atan2(vy(g)-Cy,vx(g)-Cx);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%sort the angles

anglesxy =[angles’,vx,vy];

anglesxy = sortrows(anglesxy); %puts the angles in order, x and y

% change corispondingly

stats(n).angles = anglesxy(:,1);

stats(n).vx = anglesxy(:,2);

stats(n).vy = anglesxy(:,3);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%

plot(vx,vy,’g *’)

end

function [x, y, orient] = robotpose(vid2)

%code for the full implimentation starting with getting a snapshot and

%outputting the pose of the robot, nothing more.

%tic

frame = getsnapshot(vid2);

red = frame(:,:,2) <100 & frame(:,:,3)>150;

L =bwlabel(red);

robostats =regionpropsslick(L); %a special function I created which only

% has Area and centroid hard coded into it

[maximus m] = max([robostats.Area]);

robostats(m).Area =0;

[maximus n] =max([robostats.Area]);

orient = atan2(robostats(n).Centroid(2) -...

robostats(m).Centroid(2),robostats(n).Centroid(1)-robostats(m).Centroid(1)...

);

x = robostats(n).Centroid(1);

y = robostats(n).Centroid(2);

%toc

%

% figure(2);

% imshow(red);hold on;
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% plotter = [robostats(n).Centroid(1),robostats(n).Centroid(2);

%

% robostats(n).Centroid(1)+30*cos(orreint),robostats(n).Centroid(2)+30*sin

% (orreint)];

% plot(plotter(:,1),plotter(:,2));

% plot(robostats(n).Centroid(1),robostats(n).Centroid(2),’o’);

% %

function robostats = regionpropsslick(L);

%this was parced together from the MATLAB region props code, only I

%selected the applicable sections, notably got rid of ParseInputs which

% was

%taking the most time of any of the functions.

allStats = {’Area’

’Centroid’

’PixelIdxList’

’PixelList’

’PerimeterCornerPixelList’};

numObjs = round(double(max(L(:))));

% Initialize the stats structure array.

numStats = length(allStats);

empties = cell(numStats, numObjs);

robostats = cell2struct(empties, allStats, 1);

%Compute statistics.

%Compute Area

robostats = ComputePixelIdxList(L, robostats);

for k = 1:length(robostats)

robostats(k).Area = size(robostats(k).PixelIdxList, 1);

end

%Compute Centroid

robostats = ComputePixelList(L, robostats);

for k = 1:length(robostats)

robostats(k).Centroid = mean(robostats(k).PixelList,1);

end

%%%

%%% ComputePixelIdxList

%%%

function robostats = ComputePixelIdxList(L, robostats)

% A P-by-1 matrix, where P is the number of pixels belonging to

% the region. Each element contains the linear index of the

% corresponding pixel.

% Form a sparse matrix containing one column per region. In

% column P, the location of nonzero values correspond to the

% linear indices of pixels in L that have value P. For

% example, S(100,5) is nonzero if and only L(100) equals 5.
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idx = find(L);

elementValues = L(idx);

S = sparse(idx, double(elementValues), 1);

for k = 1:length(robostats)

robostats(k).PixelIdxList = find(S(:,k));

end

%%%

%%% ComputePixelList

%%%

function robostats = ComputePixelList(L, robostats)

% A P-by-2 matrix, where P is the number of pixels belonging to

% the region. Each row contains the row and column

% coordinates of a pixel.

robostats = ComputePixelIdxList(L, robostats);

% Loop over each column of the sparse matrix. Finding the

% row indices of the nonzero entries in S(:,P) is equivalent

% to finding the linear indices of pixels in L that equal P.

% Convert the linear indices to subscripts and store

% the results in the pixel list. Reverse the order of the first

% two subscripts to form x-y order.

In = cell(1,ndims(L));

for k = 1:length(robostats)

if ~isempty(robostats(k).PixelIdxList)

[In{:}] = ind2sub(size(L), robostats(k).PixelIdxList);

robostats(k).PixelList = [In{:}];

robostats(k).PixelList = robostats(k).PixelList(:,[2 1 3:end]);

else

robostats(k).PixelList = zeros(0,ndims(L));

end

end
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H Values for color segmentation

Table 6.1: Color layer intensity values for color segmentation

Selected color Y value U value V value
Red – < 100 > 150
Blue – > 160 < 120
Green > 190 – < 110
Orange > 190 < 80 > 120
Purple > 190 > 145 > 135
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I C program running on Koala Robot
/*filename: original.c */

/* reads speed commands and writes them to the wheel motors */

/* deletes the file once it is finished with it */

#include<stdio.h>

FILE * speedfile;

FILE * motorcomds;

FILE * dummy;

int speedL;

int speedR;

main()

{

while(1)

{

dummy = fopen("/work/dummy.txt", "r");

if(!dummy)

{

/*puts("an error occured while opening the file dummy");*/

}

else

{

fclose(dummy);

speedfile = fopen("/work/matlabfile.txt", "r");

if(!speedfile) /*if it can’t open !0 = 1 */

{

puts("an error occured while opening the file matlabfile");

}

else

{

fscanf(speedfile, "%d\n%d", &speedL, &speedR);

fclose(speedfile);

/*remove("/work/matlabfile.txt");*/

remove("/work/dummy.txt");

motorcomds = fopen("/dev/ttyS0", "w");

fprintf(motorcomds, "D,%d,%d\r", speedL, speedR);

printf("D,%d,%d\n", speedL,speedR);

fclose(motorcomds);

}

}

}

}
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J Programs for physical experiments
%Program to Run a implimentation on the Koala robots

%nothing pretty about the code, but it works

t =0;

tfin = 60; %the final time

tstep = .5; %the time incriment

cyclenum =0;

%Parameters

robonum =4;

velscalar = 15;

%%%%%%%%%%%%%%%

%Pre allocate matrixes to imporove computational time

numberofcycles = length([0:tstep:tfin])-1;

connectedness = false([robonum,robonum,numberofcycles]);

positions = zeros([2,robonum,numberofcycles]);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while(t<tfin)

clear vel;

cyclenum =cyclenum+1;

%Find the location of the robots

frame = getsnapshot(vid2);

red = frame(:,:,2) <110 & frame(:,:,3)>150; %Knowles1 N drive

blue = frame(:,:,2) >160 & frame(:,:,3) <120; %Knowles2 O drive

purple = frame(:,:,1) > 190 & frame(:,:,2) >135 & frame(:,:,3) >125; %

% Knowles3 P drive

oragne = frame(:,:,1) > 190 & frame(:,:,2) <80 & frame(:,:,3) > 120;

% %Knowles5 R drive

%Find Red position

L =bwlabel(red);

robostats =regionpropsslick(L); %a special function I created which

% only has Area and centroid hard coded into it

[maximus m] = max([robostats.Area]);

robostats(m).Area =0;

[maximus n] =max([robostats.Area]);

orient(1) = atan2(robostats(n).Centroid(2) -...

robostats(m).Centroid(2),robostats(n).Centroid(1)-robostats(m).Centroid(1)...

);

xbots(1) = robostats(m).Centroid(1);

ybots(1) = robostats(m).Centroid(2);

% figure(1);

% imshow(red);hold on;

% plotter = [robostats(n).Centroid(1),robostats(n).Centroid(2);

%

% robostats(n).Centroid(1)+30*cos(orient(1)),robostats(n).Centroid(2)+30*s

% in(orient(1))];

% plot(plotter(:,1),plotter(:,2));

% plot(robostats(n).Centroid(1),robostats(n).Centroid(2),’o’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L =bwlabel(blue);

robostats =regionpropsslick(L); %a special function I created which

% only has Area and centroid hard coded into it
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[maximus m] = max([robostats.Area]);

robostats(m).Area =0;

[maximus n] =max([robostats.Area]);

orient(2) = atan2(robostats(n).Centroid(2) -...

robostats(m).Centroid(2),robostats(n).Centroid(1)-robostats(m).Centroid(1)...

);

xbots(2) = robostats(m).Centroid(1);

ybots(2) = robostats(m).Centroid(2);

% figure(2);

% imshow(blue);hold on;

% plotter = [robostats(n).Centroid(1),robostats(n).Centroid(2);

%

% robostats(n).Centroid(1)+30*cos(orient(2)),robostats(n).Centroid(2)+30*s

% in(orient(2))];

% plot(plotter(:,1),plotter(:,2));

% plot(robostats(n).Centroid(1),robostats(n).Centroid(2),’o’);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L =bwlabel(purple);

robostats =regionpropsslick(L); %a special function I created which

% only has Area and centroid hard coded into it

[maximus m] = max([robostats.Area]);

robostats(m).Area =0;

[maximus n] =max([robostats.Area]);

orient(3) = atan2(robostats(n).Centroid(2) -...

robostats(m).Centroid(2),robostats(n).Centroid(1)-robostats(m).Centroid(1)...

);

xbots(3) = robostats(m).Centroid(1);

ybots(3) = robostats(m).Centroid(2);

% figure(3);

% imshow(purple);hold on;

% plotter = [robostats(n).Centroid(1),robostats(n).Centroid(2);

%

% robostats(n).Centroid(1)+30*cos(orient(3)),robostats(n).Centroid(2)+30*s

% in(orient(3))];

% plot(plotter(:,1),plotter(:,2));

% plot(robostats(n).Centroid(1),robostats(n).Centroid(2),’o’);

%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

% L =bwlabel(oragne);

% robostats =regionpropsslick(L); %a special function I created which

% only has Area and centroid hard coded into it

% [maximus m] = max([robostats.Area]);

% robostats(m).Area =0;

% [maximus n] =max([robostats.Area]);

%

% orient(4) = atan2(robostats(n).Centroid(2) -

% robostats(m).Centroid(2),robostats(n).Centroid(1)-robostats(m).Centroid(

% 1));

% xbots(4) = robostats(m).Centroid(1);

% ybots(4) = robostats(m).Centroid(2);

% figure(4);

% imshow(oragne);hold on;

% plotter = [robostats(n).Centroid(1),robostats(n).Centroid(2);

%

% robostats(n).Centroid(1)+30*cos(orient(4)),robostats(n).Centroid(2)+30*s
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% in(orient(4))];

% plot(plotter(:,1),plotter(:,2));

% plot(robostats(n).Centroid(1),robostats(n).Centroid(2),’o’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

positions(1,:,cyclenum) = xbots;

positions(2,:,cyclenum) = ybots; %positions is a record of all the

% positions overtime

%find the velocity for each robot

for r= 1:robonum

[vel(:,r), connectedness] = velcontroller(r, cyclenum, xbots,...

ybots, connectedness, stats, idx);

vel(:,r) = jacob(vel(1,r),vel(2,r), orient(r));

end

vel = int8(velscalar*vel); %this maxes out at 127 and -128

flag =true;

while(flag)

dummy = fopen(’N:\\dummy.txt’ ,’r’);

if (dummy < 0) %if dummy isn’t there

speedfile = fopen(’N:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,1),vel(2,1)); %this is for

% c code

fclose(speedfile);

writedummy = fopen(’N:\\dummy.txt’, ’w’);

fclose(writedummy);

flag = false;

end

end

flag =true;

while(flag)

dummy = fopen(’O:\\dummy.txt’ ,’r’);

if (dummy < 0) %if dummy isn’t there

speedfile = fopen(’O:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,2),vel(2,2)); %this is for

% c code

fclose(speedfile);

writedummy = fopen(’O:\\dummy.txt’, ’w’);

fclose(writedummy);

flag = false;

end

end

flag =true;

while(flag)

dummy = fopen(’P:\\dummy.txt’ ,’r’);

if (dummy < 0) %if dummy isn’t there

speedfile = fopen(’P:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,3),vel(2,3)); %this is for

% c code

fclose(speedfile);
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writedummy = fopen(’P:\\dummy.txt’, ’w’);

fclose(writedummy);

flag = false;

end

end

% flag =true;

% while(flag)

% dummy = fopen(’R:\\dummy.txt’ ,’r’);

% if (dummy < 0) %if dummy isn’t there

%

% speedfile = fopen(’R:\\matlabfile.txt’, ’w’);

% fprintf(speedfile, ’%d\n%d’, vel(1,4),vel(2,4)); %this is

% for c code

% fclose(speedfile);

%

% writedummy = fopen(’R:\\dummy.txt’, ’w’);

% fclose(writedummy);

% flag = false;

% end

% end

t =t+tstep;

end

vel = zeros([2,4]);

vel = int8(vel);

speedfile = fopen(’N:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,1),vel(2,1)); %this is for c code

fclose(speedfile);

writedummy = fopen(’N:\\dummy.txt’, ’w’);

fclose(writedummy);

speedfile = fopen(’O:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,2),vel(2,2)); %this is for c code

fclose(speedfile);

writedummy = fopen(’O:\\dummy.txt’, ’w’);

fclose(writedummy);

speedfile = fopen(’P:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,3),vel(2,3)); %this is for c code

fclose(speedfile);

writedummy = fopen(’P:\\dummy.txt’, ’w’);

fclose(writedummy);

% speedfile = fopen(’R:\\matlabfile.txt’, ’w’);

% fprintf(speedfile, ’%d\n%d’, vel(1,4),vel(2,4)); %this is for c code

% fclose(speedfile);

%

% writedummy = fopen(’R:\\dummy.txt’, ’w’);

% fclose(writedummy);
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function [vel, connectedness] = velcontroller(r, cyclenum, xbots, ybots,...

connectedness, stats, idx)

...

%Tom Dunbar

%5FEB

%this program sets up the velocities necessary to calculate a robot’s

%new velocity and then passes the information on to

%Parameters%%%%%%%%%%%%%%%%%%%%%%%%

robonum = 4; %the number of robots in the simulation

gscale =20; %goal scaler, note that 1/gscale*gdx

oscale =25; %obstacle avoidence scaler, oscale*oadx

%maxvel = 5; %maximum velocity

minsep = 50; %this is devided by 10;

gx = 300;

gy = 220;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

P = [0;0];

C = zeros(4,robonum);

%Goal velocity%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gdx = 1/gscale*(gx-xbots(r));

gdy = 1/gscale*(gy-ybots(r));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (sqrt((gx-xbots(r))^2+ (gy-ybots(r))^2) < 10 ) %if robot is near the

% goal, do nothing,

’robot at goal’

[vel, connectedness] = paracontroller(P,C,r,cyclenum, connectedness);

% %just so the connectedness matrix gets filled in

return

else

P(:,1) = [gdx;gdy];

end

for o = idx %for each obstacle

%Obstacle avoidance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[oadx oady] = Bishopobstacle(xbots(r), ybots(r), o, stats);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(sqrt(oadx^2+oady^2) ~= 0) %if there is a vector, pass it to the

% controller

P(:,2) = [oadx;oady].*oscale;

end

%LOS stuff%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Co = zeros(4,robonum);

for q =1:robonum %check LOS with each robot

if q ~= r %the robot will always have LOS with itself...

A = [stats(o).vx’;stats(o).vy’];

xB = xbots(q);

yB = ybots(q);

Ab(1,:) = A(1,:) - xB; %translating the obstacle so B is at
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% the origin, do it can be checked by LOSchecker

Ab(2,:) = A(2,:) - yB;

xtrans = xbots(r) -xB;

ytrans = ybots(r) -yB;

[flag, outside, gammab, gammat] = LOSchecker(xtrans,ytrans,...

Ab);

if (flag)

[LOSdx,LOSdy] = LOSvelf(xtrans,ytrans, gammab, gammat,...

outside);

Co(1,q) = LOSdx;

Co(2,q) = LOSdy;

end

end %end if statement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end %end for each robot q

for c = 1:robonum

if (abs(C(1,c)) < abs(Co(1,c)))

C(1,c) = Co(1,c); %this replaces a previous LOS vector

end

if (abs(C(2,c)) < abs(Co(2,c)))

C(2,c) = Co(2,c);

end

end

end %end for each obstacle

%Range part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q = 1:robonum %for each robot

if q~=r

dist = sqrt((xbots(q)-xbots(r))^2 + (ybots(q)-ybots(r))^2); %dist = 0

% if they are the same

xunit = (xbots(q) - xbots(r))/dist; %must be written this way to

% ensure vector is pointing the correct way.

yunit = (ybots(q) - ybots(r))/dist;

if (dist && dist < (minsep)) %dist must be nonzero and less than

% minsep

delta =.01;

h =.556929;

xsig =1.1229*h; %these values based off of a valley at 2.5

c = 7.05538;

%mexhat

dist = dist/minsep; %this changes distance to a value from 0 to 1

zplus =...

(1/(2*pi*xsig))*c*(h-(dist+delta)^2/xsig^2)*exp(-1*(dist+delta)^2/(2*xsig^...

2));

zminus =...

(1/(2*pi*xsig))*c*(h-(dist-delta)^2/xsig^2)*exp(-1*(dist-delta)^2/(2*xsig^...

2));

dz = (zplus-zminus)/(2*delta);
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P(1,end+1) = dz*xunit;

P(2,end+1) = dz*yunit; %if the distance is less than minimum

% seperation,

else

dz = Impsemi(dist/10);

C(3,q) = dz*xunit; %velocity times unit vector

C(4,q) = dz*yunit;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [M N] = size(P);

% for p = 1:N

% quiver(xbots(r),ybots(r),P(1,p),P(2,p),’b’)

% end

% [M N] = size(C);

% for c=1:N

% quiver(xbots(r),ybots(r),C(1,c),C(2,c),’g’)

% quiver(xbots(r),ybots(r),C(3,c),C(4,c),’r’)

% end

% P

% C

[vel, connectedness] = paracontroller(P,C,r,cyclenum, connectedness);

%figure(1)

%quiver(xbots(r),ybots(r),feasibleVel(1),feasibleVel(2), ’m’)

% dmag = norm(feasibleVel); %this stuff should be taken care of

% in

% %the int8 convertion

%

% if (dmag >maxvel)

% feasibleVel = maxvel*feasibleVel/dmag;

% end

%

%vel =feasibleVel.*tstep;

vel = zeros([2,4]);

vel = int8(vel);

speedfile = fopen(’N:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,1),vel(2,1)); %this is for c code

fclose(speedfile);

writedummy = fopen(’N:\\dummy.txt’, ’w’);

fclose(writedummy);

speedfile = fopen(’O:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,2),vel(2,2)); %this is for c code

fclose(speedfile);

writedummy = fopen(’O:\\dummy.txt’, ’w’);

fclose(writedummy);
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speedfile = fopen(’P:\\matlabfile.txt’, ’w’);

fprintf(speedfile, ’%d\n%d’, vel(1,3),vel(2,3)); %this is for c code

fclose(speedfile);

writedummy = fopen(’P:\\dummy.txt’, ’w’);

fclose(writedummy);

% speedfile = fopen(’R:\\matlabfile.txt’, ’w’);

% fprintf(speedfile, ’%d\n%d’, vel(1,4),vel(2,4)); %this is for c code

% fclose(speedfile);

%

% writedummy = fopen(’R:\\dummy.txt’, ’w’);

% fclose(writedummy);

function [vel] = jacob(dx,dy, theta)

R = 8.5; %in cm

W = 32; %in cm taken from appendix as the width

D = 13.5;% in cm, as the distance from the middle of the wheel to the

% control point,

%note that this is inaccurate because the control point will vary as the

%image processor calculates the centroid of the small dot.

J = [ R/2*cos(theta)-R*D/W* sin(theta), R/2*cos(theta)+R*D/W*sin(theta);

R/2*sin(theta)+R*D/W* cos(theta), R/2*sin(theta)-R*D/W*cos(theta)];

vel = J^(-1)*[dx;dy];
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K Technical specifications for replacement batteries

  VH 4000 4/3A  
 

  Rechargeable Ni-MH Cylindrical  

VARTA Microbattery GmbH, Daimlerstraße 1, D-73479 Ellwangen/Jagst  Subject to change without prior notice ! 
Tel.: (+49) 7961/921-0, Telefax: (+49) 7961/921-553  Date of Issue:  04-08-03 

 

 Data Sheet 

 

   Type Number:     55140 

   System:     Nickel Metal Hydride/ 
        KOH Electrolyte  

   Nominal Voltage [V]:   1.2 

                     Nominal Capacity C [mAh]:                  3600 

                  Typical Capacity C [mAh]:   4000 
    at 800mA / 1.00V 

   Weight, approx. [g]   55.0 

   Dimensions [mm]:    min.  max. 

    Diameter [a]:    16.0  17.0 

    Height [b]:   65.5                 67.5   

    Shoulder Height [c]  65.2  67.7 

    Cap diameter [d]     7.5    8.5 

   Temperature Ranges [°C]                                     min.  max. 

    Storage: less than 30 days                    -20                           50 

                                  less than 90 days                    -20                           40 

                                                                               less than 1 year                       -20 30 

                                                                Discharge:   -20  60 

    Charge:        0  45 

   Charging Method: 

    Normal Charging:   370mA for 14 – 16h 

    Accelerated Charging (20°C): 1100mA for 4.75h 
    Time controlled, voltage control recommended 

    Fast Charging: (20°C)  3000mA *  

    Trickle Charging:   pulsed recommended 

   Charge Retention [%] at 20°C:  min. 60% 
    Capacity available after 1 month Storage at 20°C (cell was fast charged) 

   Impedance [mOhm]:   max. 60 
    at charged cells (5 cycles), 20°C, AC: 1kHz, (IEC 61951-2) 

   Typical Capacities [mAh]: 

    at 800mA / 1.00V   4000 

    at 2A / 1.00V   3700 

    at 4A / 1.00V   3600 

   Max. Discharge Current (cont.) [mA]:  5000 

   Life Expectancy (typical): 

    IEC Cycle:   >500 Cycles  

 

 

 

  

*  (dT/ dt, -dV) 

 Capacities based on normal charging     
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L Programs for Simulations
%workspace creater

%22Jan

clear

clc

global stats

robonum = 5; %the number of robots in the simulation

figure(1)

clf;

hold on;

axis([0 300 0 300])

for k=[1:1:3] % get vertices of obstacles

xys=ginput;

vx(k) = xys(1,1);

vy(k) = xys(1,2);

plot(vx(k),vy(k), ’g *’);

end

fill(vx,vy, ’k’)

sarea=0;

scx =0;

scy =0;

n= (length(vx));

for i =1:1:(n-1)

sarea = sarea + (vx(i)*vy(i+1) - vx(i+1)*vy(i));

scx = scx + (vx(i)+vx(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

scy = scy + (vy(i)+vy(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

end

area = abs(.5*(sarea + vx(n)*vy(1)-vx(1)*vy(n)));

Cx = abs(1/(6*area)* (scx+ (vx(n)+vx(1))*(vx(n)*vy(1) - vx(1)*vy(n))));

Cy = abs(1/(6*area)* (scy+ (vy(n)+vy(1))*(vx(n)*vy(1) - vx(1)*vy(n))));

plot(Cx,Cy, ’r d’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%

%find the angles from the centroid to the vetexes. for each obstacle

for g=[1:1:length(vx)]

angles(g) = atan2(vy(g)-Cy,vx(g)-Cx);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%sort the angles

anglesxy =[angles’,vx’,vy’];

anglesxy = sortrows(anglesxy); %puts the angles in order, x and y change

% corispondingly

stats(1).angles = anglesxy(:,1);

stats(1).vx = anglesxy(:,2);

stats(1).vy = anglesxy(:,3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%

stats(1).Area = area;
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stats(1).Centroid(1) = Cx;

stats(1).Centroid(2) = Cy;

%set up the robot positions

for k=[1:1:robonum]

xys=ginput;

xbots(k) = xys(1,1);

ybots(k) = xys(1,2);

plot(xbots(k),ybots(k), ’r >’); %get the robot positions

end

for k=[1:1:robonum]

xys=ginput;

gx(k) = xys(1,1);

gy(k) = xys(1,2);

plot(gx(k),gy(k), ’b *’); %get the goal positions

end

%clear

robonum = 15;

minsep = 10;

maxcom = 50;

figure(1)

clf;

hold on;

axis([0 500 0 500])

%w=2

for w = 28:28

robonum = 15;

minsep = 10;

maxcom = 50;

% figure(1)

% clf;

% hold on;

% axis([0 500 0 500])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%set up goal space

flag =true;

count =2;

while(flag & count>=2)

gxy = rand(2,robonum)*100+400;

for r =1:robonum

count =0;

for i = 1:robonum

dist = sqrt((gxy(1,i) - gxy(1,r))^2 +(gxy(2,i) -...

gxy(2,r))^2);

if minsep > dist

flag =false;
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break

end

if dist <= maxcom

count = count+1;

end

end

end

end

plot(gxy(1,:),gxy(2,:), ’*’)

gx = gxy(1,:);

gy = gxy(2,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%set up robot positions

xbots = rand(1,robonum)*200;

ybots = rand(1,robonum)*200;

plot(xbots,ybots, ’r .’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%set up triangle obstacle

%for k=[1:1:3] % get vertices of obstacles

xys=ginput;

vx = xys(:,1);

vy = xys(:,2);

plot(vx,vy, ’g *’);

%end

fill(vx,vy, ’k’)

sarea=0;

scx =0;

scy =0;

n= (length(vx));

for i =1:1:(n-1)

sarea = sarea + (vx(i)*vy(i+1) - vx(i+1)*vy(i));

scx = scx + (vx(i)+vx(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

scy = scy + (vy(i)+vy(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

end

area = abs(.5*(sarea + vx(n)*vy(1)-vx(1)*vy(n)));

Cx = abs(1/(6*area)* (scx+ (vx(n)+vx(1))*(vx(n)*vy(1) -...

vx(1)*vy(n))));

Cy = abs(1/(6*area)* (scy+ (vy(n)+vy(1))*(vx(n)*vy(1) -...

vx(1)*vy(n))));

plot(Cx,Cy, ’r d’);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%

%find the angles from the centroid to the vetexes. for each obstacle

for g=[1:1:length(vx)]

angles(g) = atan2(vy(g)-Cy,vx(g)-Cx);
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%sort the angles

anglesxy =[angles’,vx,vy];

anglesxy = sortrows(anglesxy); %puts the angles in order, x and y

% change corispondingly

stats(1).angles = anglesxy(:,1);

stats(1).vx = anglesxy(:,2);

stats(1).vy = anglesxy(:,3);

stats(1).Area = area;

stats(1).Centroid(1) = Cx;

stats(1).Centroid(2) = Cy;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%

%set up square obstacle

%for k=[1:1:4] % get vertices of obstacles

clear xys, vx,vy

xys=ginput;

vx = xys(:,1);

vy = xys(:,2);

plot(vx,vy, ’g *’);

%end

fill(vx,vy, ’k’)

sarea=0;

scx =0;

scy =0;

n= (length(vx));

for i =1:1:(n-1)

sarea = sarea + (vx(i)*vy(i+1) - vx(i+1)*vy(i));

scx = scx + (vx(i)+vx(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

scy = scy + (vy(i)+vy(i+1))*(vx(i)*vy(i+1) - vx(i+1)*vy(i));

end

area = abs(.5*(sarea + vx(n)*vy(1)-vx(1)*vy(n)));

Cx = abs(1/(6*area)* (scx+ (vx(n)+vx(1))*(vx(n)*vy(1) -...

vx(1)*vy(n))));

Cy = abs(1/(6*area)* (scy+ (vy(n)+vy(1))*(vx(n)*vy(1) -...

vx(1)*vy(n))));

plot(Cx,Cy, ’r d’);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%

%find the angles from the centroid to the vetexes. for each obstacle

for g=[1:1:length(vx)]

angles(g) = atan2(vy(g)-Cy,vx(g)-Cx);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



101

%sort the angles

anglesxy =[angles’,vx,vy];

anglesxy = sortrows(anglesxy); %puts the angles in order, x and y

% change corispondingly

stats(2).angles = anglesxy(:,1);

stats(2).vx = anglesxy(:,2);

stats(2).vy = anglesxy(:,3);

stats(2).Area = area;

stats(2).Centroid(1) = Cx;

stats(2).Centroid(2) = Cy;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%

filena = [’workspace’,num2str(w)];

save(filena,’xbots’,’ybots’,’stats’,’gx’,’gy’)

%clear

end

function [connectedness, neargoal, positions] =...

fullsim(xbots,ybots,stats,gx,gy);

%Tom Dunbar

%24MAR

%run workspace creator

%Parameters%%%%%%%%%%%%%%%%%%%%%%%%

robonum =15;

tfin = 500; %the final time

tstep = .5; %the time incriment

gscale =20; %goal scaler, note that 1/gscale*gdx

oscale =25; %obstacle avoidence scaler, oscale*oadx

Lscale = 50; %LOS scale

maxvel = 5; %maximum velocity

minsep =10; %minimum seperation between bots

goalcut = 20/gscale; %maximum distance until we say the robot is near

% enough to the goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t =0;

cyclenum =1;

%Pre allocate matrixes to imporove computational time

numberofcycles = length([0:tstep:tfin]);

connectedness = false([robonum,robonum,numberofcycles]);

positions = zeros([2,robonum,numberofcycles]);

neargoal = numberofcycles*ones([1 robonum]);

%%%%

positions(1,:,cyclenum) = xbots; %these come from the workspacecreator
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positions(2,:,cyclenum) = ybots;

connectedness(:,:,1) = connections(positions(:,:,1),stats);

% upper = triu(connects);

% lower = tril(connects);

% chec = upper & lower’;

% connectedness(:,:,cyclenum) = chec;

while(t<tfin)

for r = 1:robonum %for each robot

P=[];

C = zeros(4,robonum);

%Goal velocity%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gdx = 1/gscale*(gx(r)-xbots(r));

gdy = 1/gscale*(gy(r)-ybots(r));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (~(gdx || gdy)) %if both equal zero, the robot is at the goal

%’robot at goal’

P(:,1) = [.0001;.0001]; %this stops an error when the robot

% is *exactly* at the goal which never happens

else

P(:,1) = [gdx;gdy]; %a goal will always exist except if the

% robots reach exactly the goal.

end

if norm([gdx;gdy]) < goalcut

if cyclenum < neargoal(r) %this returns a vector of when the

% robot reaches near its goal, if it never gets near it,

neargoal(r) = cyclenum; %the vector value is the total

% number of cycles.

end

end

for o = 1:length(stats) %for each obstacle

%Obstacle avoidance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[oadx oady] = Bishopobstacle(xbots(r), ybots(r), o, stats);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(sqrt(oadx^2+oady^2) ~= 0) %if there is a vector, pass it

% to the controller

P(:,end+1) = [oadx;oady].*oscale;

end

%LOS stuff%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q =1:robonum %check LOS with each robot

if q ~= r %the robot will always have LOS with itself

A = [stats(1).vx’;stats(1).vy’];

xB = xbots(q);

yB = ybots(q);

Ab(1,:) = A(1,:) - xB; %translating the obstacle so

% B is at the origin, do it can be checked by LOSchecker

Ab(2,:) = A(2,:) - yB;

xtrans = xbots(r) -xB;

ytrans = ybots(r) -yB;
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[outside, sanctum, gammab, gammat] =...

LOSconnect(xtrans,ytrans,Ab); %is LOS needed for these robots?

if (~sanctum) %if it is NOT in the inner sanctum or

% outside the occlusion lines

%then LOS needs to be evaluated.

connxr = sum(connectedness(r,:,cyclenum)) -1;

connxq = sum(connectedness(q,:,cyclenum)) -1;

% %minus one since it will always have conx with itself

if connxr < connxq %if r has less connextions than

% q r needs to move

[LOSdx,LOSdy] = LOSvelf(xtrans,ytrans, gammab,...

gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

%quiver(xbots(r),ybots(r),LOSdx,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) > norm([C(1,q),C(2,q)])

C(1,q) = LOSdx*Lscale; %if this is a

% larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end

%other case

if connxr == connxq % or if they have equal

% connections, the lower numbered robot needs to move

if r < q

[LOSdx,LOSdy] = LOSvelf(xtrans,ytrans,...

gammab, gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

% %quiver(xbots(r),ybots(r),LOSdx*Lscale,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) > norm([C(1,q),C(2,q)])

C(1,q) = LOSdx*Lscale; %if this is a

% larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end

end

end

end %end if q~=r statement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end %end for each robot q

end %end for each obstacle

%Range part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q = 1:robonum %for each robot

if r ~=q

dist = sqrt((xbots(q)-xbots(r))^2 + (ybots(q)-ybots(r))..

^2); %dist = 0 if they are the same

xunit = (xbots(q) - xbots(r))/dist; %must be written

% this way to ensure vector is pointing the correct way.

yunit = (ybots(q) - ybots(r))/dist;

if (dist < minsep) %dist must be nonzero

dist = dist/minsep; %on a scale from 0 to 1 how small

% is the distance compared to minsep

delta =.01;

h =.556929;

xsig =1.1229*h;

c = 7.05538;
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%mexhat

zplus =...

(1/(2*pi*xsig))*c*(h-(dist+delta)^2/xsig^2)*exp(-1*(dist+delta)^2/(2*xsig^...

2));

zminus =...

(1/(2*pi*xsig))*c*(h-(dist-delta)^2/xsig^2)*exp(-1*(dist-delta)^2/(2*xsig^...

2));

dz = (zplus-zminus)/(2*delta);

P(:,end+1) = [xunit; yunit].*dz; %if the distance is

% less than minimum seperation,

else

dz = Improvedsemicont(dist);

C(3,q) = dz*xunit; %velocity times unit vector

C(4,q) = dz*yunit;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% if r ==1

% [M N] = size(P);

% for u = 1:N

% quiver(xbots(r),ybots(r),P(1,u),P(2,u),’k’)

% end

% [M N] = size(C);

% for c=1:N

% quiver(xbots(r),ybots(r),C(1,c),C(2,c),’g’)

% quiver(xbots(r),ybots(r),C(3,c),C(4,c),’r’)

% end

% end

% P

% C

commnum = sum(connectedness(r,:,cyclenum))-1; %minus one since it

% will have coms with itself

commsindx = find(connectedness(r,:,cyclenum));

A = paracontrollerupdate(P,C, commsindx, commnum);

N = size(A);

if N(2)==1;

feasibleVel =A;

else

%A

feasibleVel = smartSum(A);

end

dmag = norm(feasibleVel);

if (dmag >maxvel)

feasibleVel = maxvel*feasibleVel/dmag;

end

dvect(:,r) =feasibleVel.*tstep;

end

xbots = xbots+dvect(1,:);

ybots = ybots+dvect(2,:);

cyclenum = cyclenum+1;

positions(1,:,cyclenum) = xbots;
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positions(2,:,cyclenum) = ybots;

connectedness(:,:,cyclenum) =...

connections(positions(:,:,cyclenum),stats);

t =t+tstep;

end

function [connectedness, neargoal, positions] =...

fullsimcomms(xbots,ybots,stats,gx,gy);

%Tom Dunbar

%24MAR

%run workspace creator

%Parameters%%%%%%%%%%%%%%%%%%%%%%%%

robonum =15;

tfin = 500; %the final time

tstep = .5; %the time incriment

gscale =20; %goal scaler, note that 1/gscale*gdx

oscale =25; %obstacle avoidence scaler, oscale*oadx

Lscale = 50; %LOS scale

maxvel = 5; %maximum velocity

minsep =10; %minimum seperation between bots

goalcut = 20/gscale; %maximum distance until we say the robot is near

% enough to the goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t =0;

cyclenum =1;

%Pre allocate matrixes to imporove computational time

numberofcycles = length([0:tstep:tfin]);

connectedness = false([robonum,robonum,numberofcycles]);

positions = zeros([2,robonum,numberofcycles]);

neargoal = numberofcycles*ones([1 robonum]);

%%%%

positions(1,:,cyclenum) = xbots; %these come from the workspacecreator

positions(2,:,cyclenum) = ybots;

connectedness(:,:,1) = connections(positions(:,:,1),stats);

% upper = triu(connects);

% lower = tril(connects);

% chec = upper & lower’;

% connectedness(:,:,cyclenum) = chec;

while(t<tfin)

for r = 1:robonum %for each robot

P=[];

C = zeros(4,robonum);
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%Goal velocity%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gdx = 1/gscale*(gx(r)-xbots(r));

gdy = 1/gscale*(gy(r)-ybots(r));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if norm([gdx;gdy]) < goalcut

if cyclenum < neargoal(r) %this returns a vector of when the

% robot reaches near its goal, if it never gets near it,

neargoal(r) = cyclenum; %the vector value is the total

% number of cycles.

end

end

for o = 1:length(stats) %for each obstacle

%Obstacle avoidance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[oadx oady] = Bishopobstacle(xbots(r), ybots(r), o, stats);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(sqrt(oadx^2+oady^2) ~= 0) %if there is a vector, pass it

% to the controller

P(:,end+1) = [oadx;oady].*oscale;

end

%LOS stuff%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q =1:robonum %check LOS with each robot

if q ~= r %the robot will always have LOS with itself...

A = [stats(1).vx’;stats(1).vy’];

xB = xbots(q);

yB = ybots(q);

Ab(1,:) = A(1,:) - xB; %translating the obstacle so

% B is at the origin, do it can be checked by LOSchecker

Ab(2,:) = A(2,:) - yB;

xtrans = xbots(r) -xB;

ytrans = ybots(r) -yB;

[outside, sanctum, gammab, gammat] =...

LOSconnect(xtrans,ytrans,Ab); %is LOS needed for these robots?

if (~sanctum) %if it is NOT in the inner sanctum or

% outside the occlusion lines

%then LOS needs to be evaluated.

connxr = sum(connectedness(r,:,cyclenum)) -1;

connxq = sum(connectedness(q,:,cyclenum)) -1;

% %minus one since it will always have conx with itself

if connxr < connxq %if r has less connextions than

% q r needs to move

[LOSdx,LOSdy] = LOSvelf(xtrans,ytrans, gammab,...

gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

%quiver(xbots(r),ybots(r),LOSdx,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) > norm([C(1,q),C(2,q)]);

C(1,q) = LOSdx*Lscale; %if this is a

% larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end
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%other case

if connxr == connxq % or if they have equal

% connections, the lower numbered robot needs to move

if r < q

[LOSdx,LOSdy] = LOSvelf(xtrans,ytrans,...

gammab, gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

% %quiver(xbots(r),ybots(r),LOSdx*Lscale,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) > norm([C(1,q),C(2,q)]);

C(1,q) = LOSdx*Lscale; %if this is a

% larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end

end

end

end %end if q~=r statement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end %end for each robot q

end %end for each obstacle

%Range part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q = 1:robonum %for each robot

if r ~=q

dist = sqrt((xbots(q)-xbots(r))^2 +

(ybots(q)-ybots(r))^2); %dist = 0 if they are the same

xunit = (xbots(q) - xbots(r))/dist; %must be written

% this way to ensure vector is pointing the correct way.

yunit = (ybots(q) - ybots(r))/dist;

if (dist < minsep) %dist must be nonzero

dist = dist/minsep; %on a scale from 0 to 1 how small

% is the distance compared to minsep

delta =.01;

h =.556929;

xsig =1.1229*h;

c = 7.05538;

%mexhat

zplus =...

(1/(2*pi*xsig))*c*(h-(dist+delta)^2/xsig^2)*exp(-1*(dist+delta)^2/(2*xsig^...

2));

zminus =...

(1/(2*pi*xsig))*c*(h-(dist-delta)^2/xsig^2)*exp(-1*(dist-delta)^2/(2*xsig^...

2));

dz = (zplus-zminus)/(2*delta);

P(:,end+1) = [xunit; yunit].*dz; %if the distance is

% less than minimum seperation,

else

dz = Improvedsemicont(dist);

C(3,q) = dz*xunit; %velocity times unit vector

C(4,q) = dz*yunit;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% if r ==1
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% [M N] = size(P);

% for u = 1:N

% quiver(xbots(r),ybots(r),P(1,u),P(2,u),’k’)

% end

% [M N] = size(C);

% for c=1:N

% quiver(xbots(r),ybots(r),C(1,c),C(2,c),’g’)

% quiver(xbots(r),ybots(r),C(3,c),C(4,c),’r’)

% end

% end

% P

% C

commnum = sum(connectedness(r,:,cyclenum))-1; %minus one since it

% will have coms with itself

commsindx = find(connectedness(r,:,cyclenum));

A = paracontrollerupdate(P,C, commsindx, commnum);

feasible = feasiblity([A,[gdx;gdy]]);

if (feasible) %this is what seperates this from the regular full

% sim

A(:,end+1) = [gdx;gdy]; %only after we have a feasible comm

% vector, is it written to A

end

N = size(A);

if N(2)==1;

feasibleVel =A;

else

%A

feasibleVel = smartSum(A);

end

dmag = norm(feasibleVel);

if (dmag >maxvel)

feasibleVel = maxvel*feasibleVel/dmag;

end

dvect(:,r) =feasibleVel.*tstep;

end

xbots = xbots+dvect(1,:);

ybots = ybots+dvect(2,:);

cyclenum = cyclenum+1;

positions(1,:,cyclenum) = xbots;

positions(2,:,cyclenum) = ybots;

connectedness(:,:,cyclenum) =...

connections(positions(:,:,cyclenum),stats);

t =t+tstep;

end
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%function [connectedness, neargoal, positions] =

%fullsimrestric(xbots,ybots,stats,gx,gy);

%Tom Dunbar

%24MAR

%run workspace creator

%Parameters%%%%%%%%%%%%%%%%%%%%%%%%

robonum =3;

tfin = 50; %the final time

tstep = .5; %the time incriment

gscale =20; %goal scaler, note that 1/gscale*gdx

oscale =25; %obstacle avoidence scaler, oscale*oadx

Lscale = 50; %LOS scale

maxvel = 5; %maximum velocity

minsep =10; %minimum seperation between bots

goalcut = 20/gscale; %maximum distance until we say the

%robot is near enough to the goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t =0;

cyclenum =1;

%Pre allocate matrixes to imporove computational time

numberofcycles = length([0:tstep:tfin]);

connectedness = false([robonum,robonum,numberofcycles]);

positions = zeros([2,robonum,numberofcycles]);

neargoal = numberofcycles*ones([1 robonum]);

%%%%

positions(1,:,cyclenum) = xbots; %these come from the workspacecreator

positions(2,:,cyclenum) = ybots;

connectedness(:,:,1) = connections(positions(:,:,1),stats);

groups = grouper(connectedness(:,:,cyclenum));

% upper = triu(connects);

% lower = tril(connects);

% chec = upper & lower’;

% connectedness(:,:,cyclenum) = chec;

while(t<tfin)

for r = 1:robonum %for each robot

commsindx = [];

clear xbots;

clear ybots;

groupnum = find(groups(:,r)); %find which group the robot belongs

%to

groupidx = find(groups(groupnum,:)); %find which robots are in that

%group

counter =0;

for i = groupidx;

counter = counter+1;

xbots(counter) = positions(1,i,cyclenum); %make xbots out of

%that group.

ybots(counter) = positions(2,i,cyclenum);

if connectedness(r,i,cyclenum)

commsindx(end+1) = counter;

end

end

x = positions(1,r,cyclenum);

y = positions(2,r,cyclenum);



110

P=[];

C = zeros(4,length(xbots));

%Goal velocity%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gdx = 1/gscale*(gx(r)-x);

gdy = 1/gscale*(gy(r)-y);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (~(gdx || gdy)) %if both equal zero, the robot is at the goal

%’robot at goal’

P(:,1) = [.0001;.0001]; %this stops an error when the robot

%is *exactly* at the goal which never happens

else

P(:,1) = [gdx;gdy]; %a goal will always exist except if the

%robots reach exactly the goal.

end

if norm([gdx;gdy]) < goalcut

if cyclenum < neargoal(r) %this returns a vector of when the

%robot reaches near its goal, if it never gets near it,

neargoal(r) = cyclenum; %the vector value is the total

%number of cycles.

end

end

for o = 1:length(stats) %for each obstacle

%Obstacle avoidance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[oadx oady] = Bishopobstacle(x, y, o, stats);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(sqrt(oadx^2+oady^2) ~= 0) %if there is a vector, pass

%it to the controller

P(:,end+1) = [oadx;oady].*oscale;

end

%LOS stuff%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q =1:length(xbots) %check LOS with each robot

if xbots(q) ~= x %the robot will always have LOS with itself

A = [stats(1).vx’;stats(1).vy’];

xB = xbots(q);

yB = ybots(q);

Ab(1,:) = A(1,:) - xB; %translating the obstacle so B

%is at the origin, do it can be checked by LOSchecker

Ab(2,:) = A(2,:) - yB;

xtrans = x -xB;

ytrans = y -yB;

[outside, sanctum, gammab, gammat] = ...

LOSconnect(xtrans,ytrans,Ab);

%is LOS needed for these robots?

if (~sanctum) %if it is NOT in the inner sanctum

%or outside the occlusion lines

%then LOS needs to be evaluated.

connxr = sum(connectedness(r,:,cyclenum)) -1;

connxq =sum(connectedness(groupidx(q),:,cyclenum))...

-1; %minus one since it will always have conx with
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%itself

if connxr < connxq %if r has less connextions than

%q r needs to move

[LOSdx,LOSdy] = ...

LOSvelf(xtrans,ytrans, gammab, gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

%quiver(xbots(r),ybots(r),LOSdx,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) > norm([C(1,q),C(2,q)])

C(1,q) = LOSdx*Lscale; %if this is a

%larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end

%other case

if connxr == connxq % or if they have equal

%connections, the lower numbered robot needs to move

if r < groupidx(q)

[LOSdx,LOSdy] =...

LOSvelf(xtrans,ytrans,...

gammab, gammat, outside);

%P(:,end+1) = [LOSdx; LOSdy].*Lscale;

%quiver(xbots(r),ybots(r),LOSdx*Lscale,LOSdy, ’m’)

if norm([LOSdx, LOSdy]) >...

norm([C(1,q),C(2,q)])

C(1,q) = LOSdx*Lscale; %if this is a

%larger LOS vector use it

C(2,q) = LOSdy*Lscale;

end

end

end

end

end %end if q~=r statement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end %end for each robot q

end %end for each obstacle

%Range part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q = 1:length(xbots) %for each robot

if x ~= xbots(q)

dist = sqrt((xbots(q)-x)^2 + (ybots(q)-y)^2); %dist = 0 if

%they are the same

xunit = (xbots(q) - x)/dist; %must be written this way

%to ensure vector is pointing the correct way.

yunit = (ybots(q) - y)/dist;

if (dist < minsep) %dist must be nonzero

dist = dist/minsep; %on a scale from 0 to 1 how

%small is the distance compared to minsep

delta =.01;

h =.556929;

xsig =1.1229*h;

c = 7.05538;

%mexhat

zplus = (1/(2*pi*xsig))*c*(h-(dist+delta)^2/xsig^2)...

*exp(-1*(dist+delta)^2/(2*xsig^2));

zminus = (1/(2*pi*xsig))*c*(h-(dist-delta)^2/xsig^2)...

*exp(-1*(dist-delta)^2/(2*xsig^2));

dz = (zplus-zminus)/(2*delta);

P(:,end+1) = [xunit; yunit].*dz; %if the distance

%is less than minimum seperation,

else
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dz = Improvedsemicont(dist);

C(3,q) = dz*xunit; %velocity times unit vector

C(4,q) = dz*yunit;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% if r ==1

% [M N] = size(P);

% for u = 1:N

% quiver(xbots(r),ybots(r),P(1,u),P(2,u),’k’)

% end

% [M N] = size(C);

% for c=1:N

% quiver(xbots(r),ybots(r),C(1,c),C(2,c),’g’)

% quiver(xbots(r),ybots(r),C(3,c),C(4,c),’r’)

% end

% end

% P

% C

commnum = sum(connectedness(r,:,cyclenum))-1; %minus one since

%it will have coms with itself

%commsindx = find(connectedness(r,:,cyclenum));

A = paracontrollerupdate(P,C, commsindx, commnum);

N = size(A);

if N(2)==1;

feasibleVel =A;

else

%A

feasibleVel = smartSum(A);

end

dmag = norm(feasibleVel);

if (dmag >maxvel)

feasibleVel = maxvel*feasibleVel/dmag;

end

dvect(:,r) =feasibleVel.*tstep;

end

% xbots = xbots+dvect(1,:);

% ybots = ybots+dvect(2,:);

%

cyclenum = cyclenum+1;

positions(1,:,cyclenum) = positions(1,:,cyclenum-1) + dvect(1,:);

positions(2,:,cyclenum) = positions(2,:,cyclenum-1) + dvect(2,:);

connectedness(:,:,cyclenum) = connections(positions(:,:,cyclenum),stats);

groups = grouper(connectedness(:,:,cyclenum));

t =t+tstep;

end
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%simulation plotter

%removed all of the plotting elements from the simulation for comutational

%time purposes, this way I can just grab a figure and mess with it from

%there.

figure(1);

hold on;

[a b c] =size(positions);

for n = 1:b

xpositions(1,1:c) = positions(1,n,1:c);

ypositions(1,1:c) = positions(2,n,1:c);

plot(xpositions,ypositions, ’b’);

end
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M Programs for baseline simulations
function [connectedness, neargoal] = baseline(xbots,ybots,stats,gx,gy);

%Tom Dunbar

%Baseline function, this just has the obstacle avoidance, goal and

%interrobot collision smart summed together

%run workspace creator

%Parameters%%%%%%%%%%%%%%%%%%%%%%%%

robonum = 15; %the number of robots in the simulation

tfin = 500; %the final time

tstep = .5; %the time incriment

gscale =20; %goal scaler, note that 1/gscale*gdx

oscale =25; %obstacle avoidence scaler, oscale*oadx

Lscale = 50; %LOS scale

maxvel = 5; %maximum velocity

minsep = 10;

goalcut = 20/gscale; %maximum distance until we say the robot is near

% enough to the goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t =0;

cyclenum =1;

%Pre allocate matrixes to imporove computational time

numberofcycles = length([0:tstep:tfin]);

connectedness = false([robonum,robonum,numberofcycles]);

positions = zeros([2,robonum,numberofcycles]);

neargoal = numberofcycles*ones([1 robonum]);

%%%

positions(1,:,cyclenum) = xbots; %these come from the workspacecreator

positions(2,:,cyclenum) = ybots;

connectedness(:,:,1) = connections(positions(:,:,1), stats);

while(t<tfin)

for r = 1:robonum %for each robot

P =[];

%Goal velocity%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gdx = 1/gscale*(gx(r)-xbots(r));

gdy = 1/gscale*(gy(r)-ybots(r));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (~(gdx || gdy)) %if both equal zero, the robot is at the goal

%’robot at goal’

P(:,1) = [.0001;.0001]; %this stops an error when the robot

% is *exactly* at the goal which never happens

else

P(:,1) = [gdx;gdy]; %a goal will always exist except if the

% robots reach exactly the goal.

end

if norm([gdx;gdy]) < goalcut

if cyclenum < neargoal(r) %this returns a vector of when the

% robot reaches near its goal, if it never gets near it,

neargoal(r) = cyclenum; %the vector value is the total

% number of cycles.

end
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end

for o = 1:length(stats) %for each obstacle

%Obstacle avoidance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[oadx oady] = Bishopobstacle(xbots(r), ybots(r), o, stats);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(sqrt(oadx^2+oady^2) ~= 0) %if there is a vector, pass it

% to the controller

P(:,end+1) = [oadx;oady].*oscale;

end

end %end for each obstacle

%Range part%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q = 1:length(xbots) %for each robot

if r ~=q

dist = sqrt((xbots(q)-xbots(r))^2 +

(ybots(q)-ybots(r))^2); %dist = 0 if they are the same

xunit = (xbots(q) - xbots(r))/dist; %must be written

% this way to ensure vector is pointing the correct way.

yunit = (ybots(q) - ybots(r))/dist;

if (dist < minsep) %dist must be nonzero

dist = dist/minsep; %on a scale from 0 to 1 how small

% is the distance compared to minsep

delta =.01;

h =.556929;

xsig =1.1229*h;

c = 7.05538;

%mexhat

zplus =...

(1/(2*pi*xsig))*c*(h-(dist+delta)^2/xsig^2)*exp(-1*(dist+delta)^2/(2*xsig^...

2));

zminus =...

(1/(2*pi*xsig))*c*(h-(dist-delta)^2/xsig^2)*exp(-1*(dist-delta)^2/(2*xsig^...

2));

dz = (zplus-zminus)/(2*delta);

P(1,end+1) = dz*xunit;

P(2,end+1) = dz*yunit; %if the distance is less than

% minimum seperation,

end

end

end

feasibleVel = paracontrollerbase(P);

%figure(1)

%quiver(xbots(r),ybots(r),feasibleVel(1),feasibleVel(2), ’m’)

dmag = norm(feasibleVel);

if (dmag >maxvel)

feasibleVel = maxvel*feasibleVel/dmag;

end

dvect(:,r) =feasibleVel.*tstep;

end
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xbots = xbots+dvect(1,:);

ybots = ybots+dvect(2,:);

cyclenum = cyclenum+1;

positions(1,:,cyclenum) = xbots;

positions(2,:,cyclenum) = ybots;

connectedness(:,:,cyclenum) = connections(positions(:,:,cyclenum),...

stats);

t =t+tstep;

end

function feasibleVel = paracontrollerbase(P) %P is a 2-N priority matrix

% which is in the format of rows: dx;dy

%C is a 4-N comm matrix which is in

%the format, rows: dxLOS;dyLOS;dxrange;dyrange

%Tom Dunbar

%Trident Project

%24MAR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

%Check if all priority 1 velocities are feasible

feasible = feasiblity(P);

A=P;

while(~feasible) %while it is not feasible

D=[];

veloA = []; %blanks it out or else an infinite loop will occur!!!

S = size(A);

for i = 1:S(2)

veloA(i) = norm(A(:,i));

end

[velo i] = min(veloA);

D(1,:) = [A(1,1:i-1),A(1,i+1:end)]; %delete the smallest velocity

D(2,:) = [A(2,1:i-1),A(2,i+1:end)];

feasible = feasiblity(D); %recheck feasibility

A =D; %after the smallest has been deleted update A;

%note that velocities are sucessively deleted, and thus feasibility

%will eventually be acheived because soon there will only be two

%velocities left.

end

%A

S = size(A);

if S(2)==1;

feasibleVel =A;

return
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end

%Now that we have a set of feasible vectors its time to create the final

%motion vector!!!!

feasibleVel = smartSum(A);
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N Programs for quantitative analysis
%Tom Dunbar

%Trident Project

%27MAR

%Note: desired simulation must be changed manually and desired number of

%robots must also be changed manually in paracontrollerupdate.m

clc

clear

Agroupnum = zeros([30 1001]); %pre-allocate memory for all data

Alinktot = zeros([30 1001]);

Aetot = zeros([30 1001]);

Adegreemin = zeros([30 1001]);

Asimp = zeros([1 30]);

Aneargoal = zeros([30 15]);

Aavggroupnum = zeros([1 1001]); %pre-allocate memory for average stuff

% that will be plotted

Aavglinktot = zeros([1 1001]);

Aavgetot = zeros([1 1001]);

Adegreemin = zeros([1 1001]);

for w = 1:30

w

%load a workspace

wspace = [’workspace’, num2str(w)];

load(wspace);

%run controller

[connectedness, neargoal] = fullsim(xbots,ybots,stats,gx,gy);

%run analysis

[groupnum, linktot, etot, degreemin, simp] = kconnect(connectedness);

[a b c] = size(connectedness);

%save data for a controller

Agroupnum(w,:) = groupnum;

Alinktot(w,:) = linktot;

Aetot(w,:) = etot;

Adegreemin(w,:)= degreemin;

Asimp(w) = sum(simp)/c; %percent of time in simple redundancy

Aneargoal(w,:) = neargoal;

end

%plotting matrixes

Aavggroupnum = sum(Agroupnum)./30;

Aavglinktot = sum(Alinktot)./30;

Aavgetot = sum(Aetot)./30;

Aavgdegreemin = sum(Adegreemin)./30;

%the 6 measures of effectiveness

Aavgneargoal = sum(sum(Aneargoal’)./15)/30 %avgerage time each robot took

% to complete goal, then average time through the swarm

Aavgsimp = sum(Asimp)/30 %percentage of time in simple redundancy

AAreagroupnum = sum(Aavggroupnum);

AArealinktot = sum(Aavglinktot);

AAreaetot = sum(Aavgetot);

AAreadegreemin = sum(Aavgdegreemin);

%plot everything

figure(4)
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hold on;

subplot(2,2,1)

plot(Aavggroupnum)

axis([0 1000 0 5])

Ts = [’Number of groups (avg. over 30 runs)- Area = ’,...

num2str(AAreagroupnum)];

xlabel(’Time’)

ylabel(’# of Groups’)

title(Ts)

subplot(2,2,2)

plot(Aavglinktot)

axis([0 1000 0 15])

Ts = [’Number of links/robot (avg. over 30 runs) - Area =’,...

num2str(AArealinktot)];

xlabel(’Time’)

ylabel(’links/robot’)

title(Ts)

subplot(2,2,3)

plot(Aavgetot)

axis([0 1000 0 7])

Ts = [’Algebraic connectivity (avg. over 30 runs) - Area =’,...

num2str(AAreaetot)];

xlabel(’Time’)

ylabel(’e_2’)

title(Ts)

subplot(2,2,4)

plot(Aavgdegreemin)

axis([0 1000 0 7])

Ts = [’Minimum degree (avg. over 30 runs) - Area =’,...

num2str(AAreadegreemin)];

xlabel(’Time’)

ylabel(’Links’)

title(Ts)

save goal1

function [groupnum, linktot, etot, degreemin, simp] =...

kconnect(connectedness)

...

%Tom Dunbar

%23 FEB

%Trident Project

%This computes the statistics of a graph namely K-connectedness and vertex

%degree
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[a b c] = size(connectedness);

for cycle = 1:c;

adja = connectedness(:,:,cycle);

Vdegree = sum(adja); %vertex degree

links = Vdegree-1; %number of links per robot

for i = 1:length(Vdegree)

h(i,i) = Vdegree(i);

end

L = -1*adja +h; %the laplacian matrix

e = eig(L); %eigienvalues of the laplacian

e = sort(e); %put them in increasing numerical order

groups = size(grouper(adja));

groupnum(cycle) = groups(1); %number of groups

linktot(cycle) = sum(links)/length(links); %average number of links per

% robot

etot(cycle) = e(2); %algebraic connectivity

degreemin(cycle) = min(links); %minimum vertex degree

if min(links) >=2

simp(cycle) = 1; %simple redudancy check

else

simp(cycle) = 0;

end

% if min(links) >= desiredlinks

% meating = 1; %is the controller meeting the minimum number of links

% per robot?

% else %only applies to desiredlinks other than 2

% meating =0; %simp will return the same info if desiredlinks =2

% end

end

% figure(3)

% clf

% hold on;

% plot(groupnum, ’k-’)

% plot(etot,’-’)

% plot(ktot,’r-’)

% plot(linktot, ’g-’)

% axis([0 100 0 15])

function groups = grouper(adjacency)

%Tom Dunbar

%Trident Project

%17FEB

%this function takes an adjanecy matrix and using a depth first search

%returns the groups the robots are in.

%start at the first robot (first row)

counter =0;
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zeroidx =1; %just to get things started

while(length(zeroidx))

unexp = zeroidx(1); %takes the first new connection as unexplored

group = zeros([1,length(adjacency)]); %initialize group

while(length(unexp)) %while there still remains unexplored

% connections

r = unexp(1);

connex = find(adjacency(r,:));

group(r) =2;

for i = connex %for each connection

if (~group(i)) %if group(i) was previously unconnected

group(i) = 1;

end

end

unexp = find(group ==1);

end %end while loop

counter = counter +1;

groups(counter, :) = group; %groups should only be 2s and zeros

accountability = sum(groups,1); % sums all the columns; in the end

% should be a full matrix of twos

zeroidx = find(~accountability); %finds the zeros in the

% accountability

end

function connects = connections(positions,stats)

%Tom Dunbar

%21FEB

%Connectivity Checker for the restricted controller, this takes the

%positions matrix which is a record of all the postions and determines

%which bots are connected. This information builds the connectedness

% matrix

minsep = 10;

maxsep = 50;

robonum = 15;

connects = logical(eye(robonum));

for r = 1:robonum

for i = 1:robonum

if i ~= r

dist = sqrt((positions(1,i) - positions(1,r))^2...

+(positions(2,i) - positions(2,r))^2);

if (dist < maxsep) %first check if it is in range
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%Next check LOS%%%%%%%%%%%%%%%%%%%%%%%%%%%

oldvalue =true;

for o =1:length(stats) %check each obstacle

A = [stats(o).vx’;stats(o).vy’];

clear Ab

xB = positions(1,i);

yB = positions(2,i);

Ab(1,:) = A(1,:) - xB; %translating the obstacle so

% B is at the origin,

Ab(2,:) = A(2,:) - yB;

xtrans = positions(1,r) -xB;

ytrans = positions(2,r) -yB;

[outside, sanctum, gammab, gammat] =...

LOSconnect(xtrans,ytrans,Ab);

oldvalue = sanctum & oldvalue; %if any of these is a

% 0, they will forever be a zero

end

if (oldvalue)

connects(r,i) = true;

end

end %ends range check

end%ends if r ~=i

end

end

%Tom Dunbar

%Trident project, data analisis

%13APR

load baselin;

desired =0;

%avg transients

SSlink(1) = sum(avglinktot(1:400))/400;

SSe2(1) = sum(avgetot(1:400))/400;

SSmindegree(1) = sum(avgdegreemin(1:400))/400;

allgoal(1) = avgneargoal;

for desired = 1:8

workspae = [’goal’,num2str(desired)];

load(workspae);

%avg transients

SSlink(desired+1) = sum(Aavglinktot(1:400))/400;

SSe2(desired+1) = sum(Aavgetot(1:400))/400;

SSmindegree(desired+1) = sum(Aavgdegreemin(1:400))/400;

allgoal(desired+1) = Aavgneargoal;
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workspae = [’comms’,num2str(desired)];

load(workspae);

%avg transients

Clink(desired+1) = sum(Aavglinktot(1:400))/400;

Ce2(desired+1) = sum(Aavgetot(1:400))/400;

Cmindegree(desired+1) = sum(Aavgdegreemin(1:400))/400;

Callgoal(desired+1) = Aavgneargoal;

end

gainlink = (SSlink - SSlink(1)) ./SSlink(1)*100;

gaine2 = (SSe2 - SSe2(1)) ./SSe2(1)*100;

gainmindegree = (SSmindegree - SSmindegree(1))...

./SSmindegree(1)*100;

gaingoal = (allgoal - allgoal(1)) ./allgoal(1)*100;

Cgainlink = (Clink - SSlink(1)) ./SSlink(1)*100;

Cgaine2 = (Ce2 - SSe2(1)) ./SSe2(1)*100;

Cgainmindegree = (Cmindegree - SSmindegree(1))...

./SSmindegree(1)*100;

Cgaingoal = (Callgoal - allgoal(1)) ./allgoal(1)*100;

Cgaingmindegree(1) = gainmindegree(1) ;

Cgainge2(1) = gaine2(1) ;

Cgaingoal(1) = gaingoal(1) ;

Cmindegree(1) = SSmindegree(1) ;

Ce2(1) = SSe2(1) ;

Callgoal(1) = allgoal(1) ;

figure(1)

clf

subplot(3,1,1)

hold on;

plot([0:8], gaine2, ’k *’)

plot([0:8], Cgaine2, ’k ^’)

grid on

title(’Average percentage gain in e_2 over baseline’)

xlabel(’desired number of links/robot’)

ylabel(’Percentage’)

axis([0 8 -50 350])

subplot(3,1,2)

hold on;

plot([0:8], gainmindegree, ’k *’)

plot([0:8], Cgainmindegree, ’k ^’)

grid on

title(’Average percentage gain in minimum degree over baseline’)

xlabel(’desired number of links/robot’)

ylabel(’Percentage’)

axis([0 8 -50 350])

subplot(3,1,3)

hold on;

grid on;

plot([0:8], gaingoal,’k *’);

plot([0:8], Cgaingoal,’k ^’);

grid on;

title(’Average percentage gain in time to goal over baseline’)

xlabel(’desired number of links/robot’)
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ylabel(’Percentage’)

axis([0 8 -10 60])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2)

clf

[AX,H1,H2] = plotyy([0:8],SSmindegree, [0:8], allgoal);

set(H1,’Marker’,’*’);

set(H1,’LineStyle’,’none’);

get(AX(1)); %axis one for k connex

hold on;

plot([0:8], SSe2,’*’);

plot([0:8], Ce2, ’^’);

plot([0:8], Cmindegree, ’^’);

axis([0 8.5 0 5]);

%

%

get(AX(2));

%hold on;

plot([0:8], Callgoal, ’.-’);

%axis([0 8.5 0 500])

%

%

% % %Ts = [’Number of links/robot (avg. over 30 runs) - Area =’,

% num2str(AArealinktot)];

% %xlabel(’Desired number of links’)

% % ylabel(’links/robot’)

% % %title(Ts)

% %

%

%set(get(AX(1),’Ylabel’),’String’,’K-Connectivity’)

%set(get(AX(2),’Ylabel’),’String’,’Time to Goal’)

function createfigure(x1, y1, y2, y3, y4, y5, y6)

%CREATEFIGURE(X1,Y1,Y2,Y3,Y4,Y5,Y6)

% X1: vector of x data

% Y1: vector of y data

% Y2: vector of y data

% Y3: vector of y data

% Y4: vector of y data

% Y5: vector of y data

% Y6: vector of y data

% Auto-generated by MATLAB on 13-Apr-2005 21:59:24

%% Create figure

figure1 = figure(’FileName’,’C:\Documents and...

Settings\Administrator\Desktop\Dunbarstuff\compareboth.png’,’PaperPosition...

’,[-1.083 2.031 10.67 6.938]);
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%% Create axes

axes1 = axes(...

’YColor’,[0 0 1],...

’YTick’,[0 1 2 3 4 5 5],...

’Parent’,figure1);

axis(axes1,[0 8.5 0 5]);

xlabel(axes1,’Desired number of links/robot’);

ylabel(axes1,’K-Connectivity’);

grid(axes1,’on’);

hold(axes1,’all’);

%% Create plot

plot1 = plot(...

x1,y1,...

’LineStyle’,’none’,...

’Marker’,’*’,...

’Parent’,axes1);

%% Create plot

plot2 = plot(...

x1,y2,...

’LineStyle’,’none’,...

’Marker’,’*’,...

’Parent’,axes1);

%% Create plot

plot3 = plot(...

x1,y3,...

’LineStyle’,’none’,...

’Marker’,’^’,...

’Parent’,axes1);

%% Create plot

plot4 = plot(...

x1,y4,...

’LineStyle’,’none’,...

’Marker’,’^’,...

’Parent’,axes1);

%% Create plot

plot5 = plot(...

x1,y5,...

’Marker’,’.’,...

’Parent’,axes1);

%% Create plot

plot6 = plot(...

x1,y5,...

’Marker’,’.’,...

’Parent’,axes1);

%% Create axes

axes2 = axes(...

’YColor’,[0 0.5 0],...

’YAxisLocation’,’right’,...

’YTick’,[200 250 300 350 400 450 450],...

’Parent’,figure1);

axis(axes2,[0 8.5 200 450]);

title(axes2,{’Comparison of original and comm. varient controller ’,’with...

respect to goal completion and robustness of network’});

ylabel(axes2,’Time ot goal (avg.) in interations of controller’);
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hold(axes2,’all’);

%% Create plot

plot7 = plot(...

x1,y6,...

’Parent’,axes2,...

’DisplayName’,’Original’);

%% Create plot

plot8 = plot(...

x1,y5,...

’LineStyle’,’--’,...

’Parent’,axes2,...

’DisplayName’,’Comm varient’);

%% Create legend

legend1 = legend(...

axes2,{’Original’,’Comm varient’},...

’Color’,[0.8 0.8 0.8],...

’Position’,[0.1584 0.8152 0.1338 0.06306]);

%% Create textbox

annotation1 = annotation(...

figure1,’textbox’,...

’Position’,[0.3115 0.7132 0.1592 0.2042],...

’FitHeightToText’,’off’,...

’String’,{’Triangles mark upper and’,’lower bounds for’,’K-...

connectivity’,’of the Comm variant.’,’While * mark upper and’,’lower...

bounds of the’,’Original controller’});
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